Cargando…

Multiphoton Excitation of CsPbBr(3) Perovskite Quantum Dots (PQDs): How Many Electrons Can One PQD Donate to Multiple Molecular Acceptors?

[Image: see text] Metastable multiexcitonic states (MESs) of semiconductor quantum dots can be involved in multielectron transfer reactions, which opens new perspectives in nanomaterials-based optoelectronic applications. Herein, we demonstrate the generation of a MES in CsPbBr(3) perovskite quantum...

Descripción completa

Detalles Bibliográficos
Autores principales: Mandal, Sadananda, Tkachenko, Nikolai V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750835/
https://www.ncbi.nlm.nih.gov/pubmed/31071259
http://dx.doi.org/10.1021/acs.jpclett.9b01045
Descripción
Sumario:[Image: see text] Metastable multiexcitonic states (MESs) of semiconductor quantum dots can be involved in multielectron transfer reactions, which opens new perspectives in nanomaterials-based optoelectronic applications. Herein, we demonstrate the generation of a MES in CsPbBr(3) perovskite quantum dots (PQDs) and its dissociation dynamics through multiple electron transfers to molecular electron acceptors, anthraquinones (AQs), bound to the PQD surface by a carboxylic anchor. As many as 14 excitons are produced at an excitation density of roughly 220 μJ cm(–2) without detectable PQD degradation. Addition of AQ results in the formation of PQD–AQ hybrids with excess of AQs (PQD:AQ ≈ 1:20), which opens the possibility of multielectron transfer acts from MES to AQs. We found that the electron transfer saturates after roughly five transfer acts and that the first electron transfer (ET) time constant is as short as 1 ps. However, each ET increases the Coulomb potential barrier for the next ET, which decreases the rate of ET, resulting in a saturation after five ETs.