Cargando…

pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data

[Image: see text] Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Add...

Descripción completa

Detalles Bibliográficos
Autores principales: Stratton, Kelly G., Webb-Robertson, Bobbie-Jo M., McCue, Lee Ann, Stanfill, Bryan, Claborne, Daniel, Godinez, Iobani, Johansen, Thomas, Thompson, Allison M., Burnum-Johnson, Kristin E., Waters, Katrina M., Bramer, Lisa M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750869/
https://www.ncbi.nlm.nih.gov/pubmed/30638385
http://dx.doi.org/10.1021/acs.jproteome.8b00760
_version_ 1783452532780040192
author Stratton, Kelly G.
Webb-Robertson, Bobbie-Jo M.
McCue, Lee Ann
Stanfill, Bryan
Claborne, Daniel
Godinez, Iobani
Johansen, Thomas
Thompson, Allison M.
Burnum-Johnson, Kristin E.
Waters, Katrina M.
Bramer, Lisa M.
author_facet Stratton, Kelly G.
Webb-Robertson, Bobbie-Jo M.
McCue, Lee Ann
Stanfill, Bryan
Claborne, Daniel
Godinez, Iobani
Johansen, Thomas
Thompson, Allison M.
Burnum-Johnson, Kristin E.
Waters, Katrina M.
Bramer, Lisa M.
author_sort Stratton, Kelly G.
collection PubMed
description [Image: see text] Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Additionally, liquid chromatography–MS proteomics data present inherent challenges due to large amounts of missing data that require special consideration during statistical analysis. While a number of R packages exist to address these challenges individually, there is no single R package that addresses all of them. We present pmartR, an open-source R package, for QC (filtering and normalization), exploratory data analysis (EDA), visualization, and statistical analysis robust to missing data. Example analysis using proteomics data from a mouse study comparing smoke exposure to control demonstrates the core functionality of the package and highlights the capabilities for handling missing data. In particular, using a combined quantitative and qualitative statistical test, 19 proteins whose statistical significance would have been missed by a quantitative test alone were identified. The pmartR package provides a single software tool for QC, EDA, and statistical comparisons of MS data that is robust to missing data and includes numerous visualization capabilities.
format Online
Article
Text
id pubmed-6750869
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-67508692019-09-19 pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data Stratton, Kelly G. Webb-Robertson, Bobbie-Jo M. McCue, Lee Ann Stanfill, Bryan Claborne, Daniel Godinez, Iobani Johansen, Thomas Thompson, Allison M. Burnum-Johnson, Kristin E. Waters, Katrina M. Bramer, Lisa M. J Proteome Res [Image: see text] Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Additionally, liquid chromatography–MS proteomics data present inherent challenges due to large amounts of missing data that require special consideration during statistical analysis. While a number of R packages exist to address these challenges individually, there is no single R package that addresses all of them. We present pmartR, an open-source R package, for QC (filtering and normalization), exploratory data analysis (EDA), visualization, and statistical analysis robust to missing data. Example analysis using proteomics data from a mouse study comparing smoke exposure to control demonstrates the core functionality of the package and highlights the capabilities for handling missing data. In particular, using a combined quantitative and qualitative statistical test, 19 proteins whose statistical significance would have been missed by a quantitative test alone were identified. The pmartR package provides a single software tool for QC, EDA, and statistical comparisons of MS data that is robust to missing data and includes numerous visualization capabilities. American Chemical Society 2019-01-14 2019-03-01 /pmc/articles/PMC6750869/ /pubmed/30638385 http://dx.doi.org/10.1021/acs.jproteome.8b00760 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Stratton, Kelly G.
Webb-Robertson, Bobbie-Jo M.
McCue, Lee Ann
Stanfill, Bryan
Claborne, Daniel
Godinez, Iobani
Johansen, Thomas
Thompson, Allison M.
Burnum-Johnson, Kristin E.
Waters, Katrina M.
Bramer, Lisa M.
pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data
title pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data
title_full pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data
title_fullStr pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data
title_full_unstemmed pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data
title_short pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data
title_sort pmartr: quality control and statistics for mass spectrometry-based biological data
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750869/
https://www.ncbi.nlm.nih.gov/pubmed/30638385
http://dx.doi.org/10.1021/acs.jproteome.8b00760
work_keys_str_mv AT strattonkellyg pmartrqualitycontrolandstatisticsformassspectrometrybasedbiologicaldata
AT webbrobertsonbobbiejom pmartrqualitycontrolandstatisticsformassspectrometrybasedbiologicaldata
AT mccueleeann pmartrqualitycontrolandstatisticsformassspectrometrybasedbiologicaldata
AT stanfillbryan pmartrqualitycontrolandstatisticsformassspectrometrybasedbiologicaldata
AT clabornedaniel pmartrqualitycontrolandstatisticsformassspectrometrybasedbiologicaldata
AT godineziobani pmartrqualitycontrolandstatisticsformassspectrometrybasedbiologicaldata
AT johansenthomas pmartrqualitycontrolandstatisticsformassspectrometrybasedbiologicaldata
AT thompsonallisonm pmartrqualitycontrolandstatisticsformassspectrometrybasedbiologicaldata
AT burnumjohnsonkristine pmartrqualitycontrolandstatisticsformassspectrometrybasedbiologicaldata
AT waterskatrinam pmartrqualitycontrolandstatisticsformassspectrometrybasedbiologicaldata
AT bramerlisam pmartrqualitycontrolandstatisticsformassspectrometrybasedbiologicaldata