Cargando…
Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures
[Image: see text] Surface phonon polaritons (SPhPs), the surface-bound electromagnetic modes of a polar material resulting from the coupling of light with optic phonons, offer immense technological opportunities for nanophotonics in the infrared (IR) spectral region. However, once a particular mater...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750877/ https://www.ncbi.nlm.nih.gov/pubmed/31184132 http://dx.doi.org/10.1021/acsnano.9b01275 |
_version_ | 1783452534682157056 |
---|---|
author | Ratchford, Daniel C. Winta, Christopher J. Chatzakis, Ioannis Ellis, Chase T. Passler, Nikolai C. Winterstein, Jonathan Dev, Pratibha Razdolski, Ilya Matson, Joseph R. Nolen, Joshua R. Tischler, Joseph G. Vurgaftman, Igor Katz, Michael B. Nepal, Neeraj Hardy, Matthew T. Hachtel, Jordan A. Idrobo, Juan-Carlos Reinecke, Thomas L. Giles, Alexander J. Katzer, D. Scott Bassim, Nabil D. Stroud, Rhonda M. Wolf, Martin Paarmann, Alexander Caldwell, Joshua D. |
author_facet | Ratchford, Daniel C. Winta, Christopher J. Chatzakis, Ioannis Ellis, Chase T. Passler, Nikolai C. Winterstein, Jonathan Dev, Pratibha Razdolski, Ilya Matson, Joseph R. Nolen, Joshua R. Tischler, Joseph G. Vurgaftman, Igor Katz, Michael B. Nepal, Neeraj Hardy, Matthew T. Hachtel, Jordan A. Idrobo, Juan-Carlos Reinecke, Thomas L. Giles, Alexander J. Katzer, D. Scott Bassim, Nabil D. Stroud, Rhonda M. Wolf, Martin Paarmann, Alexander Caldwell, Joshua D. |
author_sort | Ratchford, Daniel C. |
collection | PubMed |
description | [Image: see text] Surface phonon polaritons (SPhPs), the surface-bound electromagnetic modes of a polar material resulting from the coupling of light with optic phonons, offer immense technological opportunities for nanophotonics in the infrared (IR) spectral region. However, once a particular material is chosen, the SPhP characteristics are fixed by the spectral positions of the optic phonon frequencies. Here, we provide a demonstration of how the frequency of these optic phonons can be altered by employing atomic-scale superlattices (SLs) of polar semiconductors using AlN/GaN SLs as an example. Using second harmonic generation (SHG) spectroscopy, we show that the optic phonon frequencies of the SLs exhibit a strong dependence on the layer thicknesses of the constituent materials. Furthermore, new vibrational modes emerge that are confined to the layers, while others are centered at the AlN/GaN interfaces. As the IR dielectric function is governed by the optic phonon behavior in polar materials, controlling the optic phonons provides a means to induce and potentially design a dielectric function distinct from the constituent materials and from the effective-medium approximation of the SL. We show that atomic-scale AlN/GaN SLs instead have multiple Reststrahlen bands featuring spectral regions that exhibit either normal or extreme hyperbolic dispersion with both positive and negative permittivities dispersing rapidly with frequency. Apart from the ability to engineer the SPhP properties, SL structures may also lead to multifunctional devices that combine the mechanical, electrical, thermal, or optoelectronic functionality of the constituent layers. We propose that this effort is another step toward realizing user-defined, actively tunable IR optics and sources. |
format | Online Article Text |
id | pubmed-6750877 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-67508772019-09-19 Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures Ratchford, Daniel C. Winta, Christopher J. Chatzakis, Ioannis Ellis, Chase T. Passler, Nikolai C. Winterstein, Jonathan Dev, Pratibha Razdolski, Ilya Matson, Joseph R. Nolen, Joshua R. Tischler, Joseph G. Vurgaftman, Igor Katz, Michael B. Nepal, Neeraj Hardy, Matthew T. Hachtel, Jordan A. Idrobo, Juan-Carlos Reinecke, Thomas L. Giles, Alexander J. Katzer, D. Scott Bassim, Nabil D. Stroud, Rhonda M. Wolf, Martin Paarmann, Alexander Caldwell, Joshua D. ACS Nano [Image: see text] Surface phonon polaritons (SPhPs), the surface-bound electromagnetic modes of a polar material resulting from the coupling of light with optic phonons, offer immense technological opportunities for nanophotonics in the infrared (IR) spectral region. However, once a particular material is chosen, the SPhP characteristics are fixed by the spectral positions of the optic phonon frequencies. Here, we provide a demonstration of how the frequency of these optic phonons can be altered by employing atomic-scale superlattices (SLs) of polar semiconductors using AlN/GaN SLs as an example. Using second harmonic generation (SHG) spectroscopy, we show that the optic phonon frequencies of the SLs exhibit a strong dependence on the layer thicknesses of the constituent materials. Furthermore, new vibrational modes emerge that are confined to the layers, while others are centered at the AlN/GaN interfaces. As the IR dielectric function is governed by the optic phonon behavior in polar materials, controlling the optic phonons provides a means to induce and potentially design a dielectric function distinct from the constituent materials and from the effective-medium approximation of the SL. We show that atomic-scale AlN/GaN SLs instead have multiple Reststrahlen bands featuring spectral regions that exhibit either normal or extreme hyperbolic dispersion with both positive and negative permittivities dispersing rapidly with frequency. Apart from the ability to engineer the SPhP properties, SL structures may also lead to multifunctional devices that combine the mechanical, electrical, thermal, or optoelectronic functionality of the constituent layers. We propose that this effort is another step toward realizing user-defined, actively tunable IR optics and sources. American Chemical Society 2019-06-04 2019-06-25 /pmc/articles/PMC6750877/ /pubmed/31184132 http://dx.doi.org/10.1021/acsnano.9b01275 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Ratchford, Daniel C. Winta, Christopher J. Chatzakis, Ioannis Ellis, Chase T. Passler, Nikolai C. Winterstein, Jonathan Dev, Pratibha Razdolski, Ilya Matson, Joseph R. Nolen, Joshua R. Tischler, Joseph G. Vurgaftman, Igor Katz, Michael B. Nepal, Neeraj Hardy, Matthew T. Hachtel, Jordan A. Idrobo, Juan-Carlos Reinecke, Thomas L. Giles, Alexander J. Katzer, D. Scott Bassim, Nabil D. Stroud, Rhonda M. Wolf, Martin Paarmann, Alexander Caldwell, Joshua D. Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures |
title | Controlling the Infrared Dielectric Function through
Atomic-Scale Heterostructures |
title_full | Controlling the Infrared Dielectric Function through
Atomic-Scale Heterostructures |
title_fullStr | Controlling the Infrared Dielectric Function through
Atomic-Scale Heterostructures |
title_full_unstemmed | Controlling the Infrared Dielectric Function through
Atomic-Scale Heterostructures |
title_short | Controlling the Infrared Dielectric Function through
Atomic-Scale Heterostructures |
title_sort | controlling the infrared dielectric function through
atomic-scale heterostructures |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750877/ https://www.ncbi.nlm.nih.gov/pubmed/31184132 http://dx.doi.org/10.1021/acsnano.9b01275 |
work_keys_str_mv | AT ratchforddanielc controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT wintachristopherj controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT chatzakisioannis controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT ellischaset controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT passlernikolaic controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT wintersteinjonathan controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT devpratibha controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT razdolskiilya controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT matsonjosephr controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT nolenjoshuar controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT tischlerjosephg controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT vurgaftmanigor controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT katzmichaelb controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT nepalneeraj controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT hardymatthewt controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT hachteljordana controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT idrobojuancarlos controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT reineckethomasl controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT gilesalexanderj controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT katzerdscott controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT bassimnabild controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT stroudrhondam controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT wolfmartin controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT paarmannalexander controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures AT caldwelljoshuad controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures |