Cargando…

Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures

[Image: see text] Surface phonon polaritons (SPhPs), the surface-bound electromagnetic modes of a polar material resulting from the coupling of light with optic phonons, offer immense technological opportunities for nanophotonics in the infrared (IR) spectral region. However, once a particular mater...

Descripción completa

Detalles Bibliográficos
Autores principales: Ratchford, Daniel C., Winta, Christopher J., Chatzakis, Ioannis, Ellis, Chase T., Passler, Nikolai C., Winterstein, Jonathan, Dev, Pratibha, Razdolski, Ilya, Matson, Joseph R., Nolen, Joshua R., Tischler, Joseph G., Vurgaftman, Igor, Katz, Michael B., Nepal, Neeraj, Hardy, Matthew T., Hachtel, Jordan A., Idrobo, Juan-Carlos, Reinecke, Thomas L., Giles, Alexander J., Katzer, D. Scott, Bassim, Nabil D., Stroud, Rhonda M., Wolf, Martin, Paarmann, Alexander, Caldwell, Joshua D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750877/
https://www.ncbi.nlm.nih.gov/pubmed/31184132
http://dx.doi.org/10.1021/acsnano.9b01275
_version_ 1783452534682157056
author Ratchford, Daniel C.
Winta, Christopher J.
Chatzakis, Ioannis
Ellis, Chase T.
Passler, Nikolai C.
Winterstein, Jonathan
Dev, Pratibha
Razdolski, Ilya
Matson, Joseph R.
Nolen, Joshua R.
Tischler, Joseph G.
Vurgaftman, Igor
Katz, Michael B.
Nepal, Neeraj
Hardy, Matthew T.
Hachtel, Jordan A.
Idrobo, Juan-Carlos
Reinecke, Thomas L.
Giles, Alexander J.
Katzer, D. Scott
Bassim, Nabil D.
Stroud, Rhonda M.
Wolf, Martin
Paarmann, Alexander
Caldwell, Joshua D.
author_facet Ratchford, Daniel C.
Winta, Christopher J.
Chatzakis, Ioannis
Ellis, Chase T.
Passler, Nikolai C.
Winterstein, Jonathan
Dev, Pratibha
Razdolski, Ilya
Matson, Joseph R.
Nolen, Joshua R.
Tischler, Joseph G.
Vurgaftman, Igor
Katz, Michael B.
Nepal, Neeraj
Hardy, Matthew T.
Hachtel, Jordan A.
Idrobo, Juan-Carlos
Reinecke, Thomas L.
Giles, Alexander J.
Katzer, D. Scott
Bassim, Nabil D.
Stroud, Rhonda M.
Wolf, Martin
Paarmann, Alexander
Caldwell, Joshua D.
author_sort Ratchford, Daniel C.
collection PubMed
description [Image: see text] Surface phonon polaritons (SPhPs), the surface-bound electromagnetic modes of a polar material resulting from the coupling of light with optic phonons, offer immense technological opportunities for nanophotonics in the infrared (IR) spectral region. However, once a particular material is chosen, the SPhP characteristics are fixed by the spectral positions of the optic phonon frequencies. Here, we provide a demonstration of how the frequency of these optic phonons can be altered by employing atomic-scale superlattices (SLs) of polar semiconductors using AlN/GaN SLs as an example. Using second harmonic generation (SHG) spectroscopy, we show that the optic phonon frequencies of the SLs exhibit a strong dependence on the layer thicknesses of the constituent materials. Furthermore, new vibrational modes emerge that are confined to the layers, while others are centered at the AlN/GaN interfaces. As the IR dielectric function is governed by the optic phonon behavior in polar materials, controlling the optic phonons provides a means to induce and potentially design a dielectric function distinct from the constituent materials and from the effective-medium approximation of the SL. We show that atomic-scale AlN/GaN SLs instead have multiple Reststrahlen bands featuring spectral regions that exhibit either normal or extreme hyperbolic dispersion with both positive and negative permittivities dispersing rapidly with frequency. Apart from the ability to engineer the SPhP properties, SL structures may also lead to multifunctional devices that combine the mechanical, electrical, thermal, or optoelectronic functionality of the constituent layers. We propose that this effort is another step toward realizing user-defined, actively tunable IR optics and sources.
format Online
Article
Text
id pubmed-6750877
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-67508772019-09-19 Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures Ratchford, Daniel C. Winta, Christopher J. Chatzakis, Ioannis Ellis, Chase T. Passler, Nikolai C. Winterstein, Jonathan Dev, Pratibha Razdolski, Ilya Matson, Joseph R. Nolen, Joshua R. Tischler, Joseph G. Vurgaftman, Igor Katz, Michael B. Nepal, Neeraj Hardy, Matthew T. Hachtel, Jordan A. Idrobo, Juan-Carlos Reinecke, Thomas L. Giles, Alexander J. Katzer, D. Scott Bassim, Nabil D. Stroud, Rhonda M. Wolf, Martin Paarmann, Alexander Caldwell, Joshua D. ACS Nano [Image: see text] Surface phonon polaritons (SPhPs), the surface-bound electromagnetic modes of a polar material resulting from the coupling of light with optic phonons, offer immense technological opportunities for nanophotonics in the infrared (IR) spectral region. However, once a particular material is chosen, the SPhP characteristics are fixed by the spectral positions of the optic phonon frequencies. Here, we provide a demonstration of how the frequency of these optic phonons can be altered by employing atomic-scale superlattices (SLs) of polar semiconductors using AlN/GaN SLs as an example. Using second harmonic generation (SHG) spectroscopy, we show that the optic phonon frequencies of the SLs exhibit a strong dependence on the layer thicknesses of the constituent materials. Furthermore, new vibrational modes emerge that are confined to the layers, while others are centered at the AlN/GaN interfaces. As the IR dielectric function is governed by the optic phonon behavior in polar materials, controlling the optic phonons provides a means to induce and potentially design a dielectric function distinct from the constituent materials and from the effective-medium approximation of the SL. We show that atomic-scale AlN/GaN SLs instead have multiple Reststrahlen bands featuring spectral regions that exhibit either normal or extreme hyperbolic dispersion with both positive and negative permittivities dispersing rapidly with frequency. Apart from the ability to engineer the SPhP properties, SL structures may also lead to multifunctional devices that combine the mechanical, electrical, thermal, or optoelectronic functionality of the constituent layers. We propose that this effort is another step toward realizing user-defined, actively tunable IR optics and sources. American Chemical Society 2019-06-04 2019-06-25 /pmc/articles/PMC6750877/ /pubmed/31184132 http://dx.doi.org/10.1021/acsnano.9b01275 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Ratchford, Daniel C.
Winta, Christopher J.
Chatzakis, Ioannis
Ellis, Chase T.
Passler, Nikolai C.
Winterstein, Jonathan
Dev, Pratibha
Razdolski, Ilya
Matson, Joseph R.
Nolen, Joshua R.
Tischler, Joseph G.
Vurgaftman, Igor
Katz, Michael B.
Nepal, Neeraj
Hardy, Matthew T.
Hachtel, Jordan A.
Idrobo, Juan-Carlos
Reinecke, Thomas L.
Giles, Alexander J.
Katzer, D. Scott
Bassim, Nabil D.
Stroud, Rhonda M.
Wolf, Martin
Paarmann, Alexander
Caldwell, Joshua D.
Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures
title Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures
title_full Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures
title_fullStr Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures
title_full_unstemmed Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures
title_short Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures
title_sort controlling the infrared dielectric function through atomic-scale heterostructures
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750877/
https://www.ncbi.nlm.nih.gov/pubmed/31184132
http://dx.doi.org/10.1021/acsnano.9b01275
work_keys_str_mv AT ratchforddanielc controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT wintachristopherj controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT chatzakisioannis controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT ellischaset controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT passlernikolaic controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT wintersteinjonathan controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT devpratibha controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT razdolskiilya controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT matsonjosephr controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT nolenjoshuar controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT tischlerjosephg controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT vurgaftmanigor controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT katzmichaelb controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT nepalneeraj controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT hardymatthewt controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT hachteljordana controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT idrobojuancarlos controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT reineckethomasl controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT gilesalexanderj controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT katzerdscott controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT bassimnabild controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT stroudrhondam controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT wolfmartin controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT paarmannalexander controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures
AT caldwelljoshuad controllingtheinfrareddielectricfunctionthroughatomicscaleheterostructures