Cargando…
Finite-Size-Corrected Rotational Diffusion Coefficients of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics Simulations
[Image: see text] We investigate system-size effects on the rotational diffusion of membrane proteins and other membrane-embedded molecules in molecular dynamics simulations. We find that the rotational diffusion coefficient slows down relative to the infinite-system value by a factor of one minus t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750896/ https://www.ncbi.nlm.nih.gov/pubmed/31132280 http://dx.doi.org/10.1021/acs.jpcb.9b01656 |
_version_ | 1783452539118682112 |
---|---|
author | Vögele, Martin Köfinger, Jürgen Hummer, Gerhard |
author_facet | Vögele, Martin Köfinger, Jürgen Hummer, Gerhard |
author_sort | Vögele, Martin |
collection | PubMed |
description | [Image: see text] We investigate system-size effects on the rotational diffusion of membrane proteins and other membrane-embedded molecules in molecular dynamics simulations. We find that the rotational diffusion coefficient slows down relative to the infinite-system value by a factor of one minus the ratio of protein and box areas. This correction factor follows from the hydrodynamics of rotational flows under periodic boundary conditions and is rationalized in terms of Taylor–Couette flow. For membrane proteins like transporters, channels, or receptors in typical simulation setups, the protein-covered area tends to be relatively large, requiring a significant finite-size correction. Molecular dynamics simulations of the protein adenine nucleotide translocase (ANT1) and of a carbon nanotube porin in lipid membranes show that the hydrodynamic finite-size correction for rotational diffusion is accurate in standard-use cases. The dependence of the rotational diffusion on box size can be used to determine the membrane viscosity. |
format | Online Article Text |
id | pubmed-6750896 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-67508962019-09-19 Finite-Size-Corrected Rotational Diffusion Coefficients of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics Simulations Vögele, Martin Köfinger, Jürgen Hummer, Gerhard J Phys Chem B [Image: see text] We investigate system-size effects on the rotational diffusion of membrane proteins and other membrane-embedded molecules in molecular dynamics simulations. We find that the rotational diffusion coefficient slows down relative to the infinite-system value by a factor of one minus the ratio of protein and box areas. This correction factor follows from the hydrodynamics of rotational flows under periodic boundary conditions and is rationalized in terms of Taylor–Couette flow. For membrane proteins like transporters, channels, or receptors in typical simulation setups, the protein-covered area tends to be relatively large, requiring a significant finite-size correction. Molecular dynamics simulations of the protein adenine nucleotide translocase (ANT1) and of a carbon nanotube porin in lipid membranes show that the hydrodynamic finite-size correction for rotational diffusion is accurate in standard-use cases. The dependence of the rotational diffusion on box size can be used to determine the membrane viscosity. American Chemical Society 2019-05-27 2019-06-20 /pmc/articles/PMC6750896/ /pubmed/31132280 http://dx.doi.org/10.1021/acs.jpcb.9b01656 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Vögele, Martin Köfinger, Jürgen Hummer, Gerhard Finite-Size-Corrected Rotational Diffusion Coefficients of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics Simulations |
title | Finite-Size-Corrected Rotational Diffusion Coefficients
of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics
Simulations |
title_full | Finite-Size-Corrected Rotational Diffusion Coefficients
of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics
Simulations |
title_fullStr | Finite-Size-Corrected Rotational Diffusion Coefficients
of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics
Simulations |
title_full_unstemmed | Finite-Size-Corrected Rotational Diffusion Coefficients
of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics
Simulations |
title_short | Finite-Size-Corrected Rotational Diffusion Coefficients
of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics
Simulations |
title_sort | finite-size-corrected rotational diffusion coefficients
of membrane proteins and carbon nanotubes from molecular dynamics
simulations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750896/ https://www.ncbi.nlm.nih.gov/pubmed/31132280 http://dx.doi.org/10.1021/acs.jpcb.9b01656 |
work_keys_str_mv | AT vogelemartin finitesizecorrectedrotationaldiffusioncoefficientsofmembraneproteinsandcarbonnanotubesfrommoleculardynamicssimulations AT kofingerjurgen finitesizecorrectedrotationaldiffusioncoefficientsofmembraneproteinsandcarbonnanotubesfrommoleculardynamicssimulations AT hummergerhard finitesizecorrectedrotationaldiffusioncoefficientsofmembraneproteinsandcarbonnanotubesfrommoleculardynamicssimulations |