Cargando…

Finite-Size-Corrected Rotational Diffusion Coefficients of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics Simulations

[Image: see text] We investigate system-size effects on the rotational diffusion of membrane proteins and other membrane-embedded molecules in molecular dynamics simulations. We find that the rotational diffusion coefficient slows down relative to the infinite-system value by a factor of one minus t...

Descripción completa

Detalles Bibliográficos
Autores principales: Vögele, Martin, Köfinger, Jürgen, Hummer, Gerhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750896/
https://www.ncbi.nlm.nih.gov/pubmed/31132280
http://dx.doi.org/10.1021/acs.jpcb.9b01656
_version_ 1783452539118682112
author Vögele, Martin
Köfinger, Jürgen
Hummer, Gerhard
author_facet Vögele, Martin
Köfinger, Jürgen
Hummer, Gerhard
author_sort Vögele, Martin
collection PubMed
description [Image: see text] We investigate system-size effects on the rotational diffusion of membrane proteins and other membrane-embedded molecules in molecular dynamics simulations. We find that the rotational diffusion coefficient slows down relative to the infinite-system value by a factor of one minus the ratio of protein and box areas. This correction factor follows from the hydrodynamics of rotational flows under periodic boundary conditions and is rationalized in terms of Taylor–Couette flow. For membrane proteins like transporters, channels, or receptors in typical simulation setups, the protein-covered area tends to be relatively large, requiring a significant finite-size correction. Molecular dynamics simulations of the protein adenine nucleotide translocase (ANT1) and of a carbon nanotube porin in lipid membranes show that the hydrodynamic finite-size correction for rotational diffusion is accurate in standard-use cases. The dependence of the rotational diffusion on box size can be used to determine the membrane viscosity.
format Online
Article
Text
id pubmed-6750896
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-67508962019-09-19 Finite-Size-Corrected Rotational Diffusion Coefficients of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics Simulations Vögele, Martin Köfinger, Jürgen Hummer, Gerhard J Phys Chem B [Image: see text] We investigate system-size effects on the rotational diffusion of membrane proteins and other membrane-embedded molecules in molecular dynamics simulations. We find that the rotational diffusion coefficient slows down relative to the infinite-system value by a factor of one minus the ratio of protein and box areas. This correction factor follows from the hydrodynamics of rotational flows under periodic boundary conditions and is rationalized in terms of Taylor–Couette flow. For membrane proteins like transporters, channels, or receptors in typical simulation setups, the protein-covered area tends to be relatively large, requiring a significant finite-size correction. Molecular dynamics simulations of the protein adenine nucleotide translocase (ANT1) and of a carbon nanotube porin in lipid membranes show that the hydrodynamic finite-size correction for rotational diffusion is accurate in standard-use cases. The dependence of the rotational diffusion on box size can be used to determine the membrane viscosity. American Chemical Society 2019-05-27 2019-06-20 /pmc/articles/PMC6750896/ /pubmed/31132280 http://dx.doi.org/10.1021/acs.jpcb.9b01656 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Vögele, Martin
Köfinger, Jürgen
Hummer, Gerhard
Finite-Size-Corrected Rotational Diffusion Coefficients of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics Simulations
title Finite-Size-Corrected Rotational Diffusion Coefficients of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics Simulations
title_full Finite-Size-Corrected Rotational Diffusion Coefficients of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics Simulations
title_fullStr Finite-Size-Corrected Rotational Diffusion Coefficients of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics Simulations
title_full_unstemmed Finite-Size-Corrected Rotational Diffusion Coefficients of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics Simulations
title_short Finite-Size-Corrected Rotational Diffusion Coefficients of Membrane Proteins and Carbon Nanotubes from Molecular Dynamics Simulations
title_sort finite-size-corrected rotational diffusion coefficients of membrane proteins and carbon nanotubes from molecular dynamics simulations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750896/
https://www.ncbi.nlm.nih.gov/pubmed/31132280
http://dx.doi.org/10.1021/acs.jpcb.9b01656
work_keys_str_mv AT vogelemartin finitesizecorrectedrotationaldiffusioncoefficientsofmembraneproteinsandcarbonnanotubesfrommoleculardynamicssimulations
AT kofingerjurgen finitesizecorrectedrotationaldiffusioncoefficientsofmembraneproteinsandcarbonnanotubesfrommoleculardynamicssimulations
AT hummergerhard finitesizecorrectedrotationaldiffusioncoefficientsofmembraneproteinsandcarbonnanotubesfrommoleculardynamicssimulations