Cargando…
Grafting Polymers onto Carbon Nitride via Visible-Light-Induced Photofunctionalization
[Image: see text] Metal-free graphitic carbon nitride (g-CN) has attracted significant attention recently due to its multiple applications, such as photocatalysis, energy storage and conversion, and biomaterials, albeit formation of g-CN films is challenging. Herein, a “grafting to” route to graft p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750929/ https://www.ncbi.nlm.nih.gov/pubmed/31543549 http://dx.doi.org/10.1021/acs.macromol.9b00894 |
Sumario: | [Image: see text] Metal-free graphitic carbon nitride (g-CN) has attracted significant attention recently due to its multiple applications, such as photocatalysis, energy storage and conversion, and biomaterials, albeit formation of g-CN films is challenging. Herein, a “grafting to” route to graft polymer brushes onto g-CN via visible-light irradiation is described. Afterward, g-CN/polymer films can be obtained through spin coating on glass substrates. As such, the present material provides an improved process toward further application of g-CN in thin films. Moreover, an improved dispersibility in organic solvent was realized after grafting and functional groups (such as epoxides) were introduced to g-CN. Subsequently, the epoxy groups were utilized for further functionalization to adjust the surface polarity. |
---|