Cargando…
Emergent electromagnetism in condensed matter
Electrons in solids constitute quantum many-body systems showing a variety of phenomena. It often happens that the eigen states of the Hamiltonian are classified into subgroups separated by energy gaps. Band structures in solids and spin polarization in Mott insulators are two representative example...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Japan Academy
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751299/ https://www.ncbi.nlm.nih.gov/pubmed/31189780 http://dx.doi.org/10.2183/pjab.95.019 |
_version_ | 1783452594777096192 |
---|---|
author | NAGAOSA, Naoto |
author_facet | NAGAOSA, Naoto |
author_sort | NAGAOSA, Naoto |
collection | PubMed |
description | Electrons in solids constitute quantum many-body systems showing a variety of phenomena. It often happens that the eigen states of the Hamiltonian are classified into subgroups separated by energy gaps. Band structures in solids and spin polarization in Mott insulators are two representative examples. The subspace spanned by these wavefunctions belonging to each of this subgroup can be regarded as a manifold in Hilbert space, and concepts concerning differential geometry become relevant. Connection and curvature are two key quantities, which correspond to the vector potential and field strength of electromagnetism, respectively. Therefore, one can construct an effective electromagnetic field from the structure of the Hilbert space, which is called an “emergent electromagnetic field”. In this article, we review the physics related to this emergent electromagnetic field in solids, including the gauge theory of strongly correlated electrons, various Hall effects, multiferroics, topological matter, magnetic texture such as skyrmions, and the shift current in noncentrosymmetric materials. |
format | Online Article Text |
id | pubmed-6751299 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Japan Academy |
record_format | MEDLINE/PubMed |
spelling | pubmed-67512992019-09-25 Emergent electromagnetism in condensed matter NAGAOSA, Naoto Proc Jpn Acad Ser B Phys Biol Sci Review Electrons in solids constitute quantum many-body systems showing a variety of phenomena. It often happens that the eigen states of the Hamiltonian are classified into subgroups separated by energy gaps. Band structures in solids and spin polarization in Mott insulators are two representative examples. The subspace spanned by these wavefunctions belonging to each of this subgroup can be regarded as a manifold in Hilbert space, and concepts concerning differential geometry become relevant. Connection and curvature are two key quantities, which correspond to the vector potential and field strength of electromagnetism, respectively. Therefore, one can construct an effective electromagnetic field from the structure of the Hilbert space, which is called an “emergent electromagnetic field”. In this article, we review the physics related to this emergent electromagnetic field in solids, including the gauge theory of strongly correlated electrons, various Hall effects, multiferroics, topological matter, magnetic texture such as skyrmions, and the shift current in noncentrosymmetric materials. The Japan Academy 2019-06-11 /pmc/articles/PMC6751299/ /pubmed/31189780 http://dx.doi.org/10.2183/pjab.95.019 Text en © 2019 The Japan Academy This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review NAGAOSA, Naoto Emergent electromagnetism in condensed matter |
title | Emergent electromagnetism in condensed matter |
title_full | Emergent electromagnetism in condensed matter |
title_fullStr | Emergent electromagnetism in condensed matter |
title_full_unstemmed | Emergent electromagnetism in condensed matter |
title_short | Emergent electromagnetism in condensed matter |
title_sort | emergent electromagnetism in condensed matter |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751299/ https://www.ncbi.nlm.nih.gov/pubmed/31189780 http://dx.doi.org/10.2183/pjab.95.019 |
work_keys_str_mv | AT nagaosanaoto emergentelectromagnetismincondensedmatter |