Cargando…
Monitoring secondhand tobacco smoke remotely in real-time: A simple low-cost approach
INTRODUCTION: Secondhand smoke (SHS) in the home is a serious cause of ill-health, especially for children. SHS indoors can be indirectly measured using particulate matter monitors, and interventions have been developed using feedback from these monitors to encourage smoke-free homes. These interven...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Publishing on behalf of the International Society for the Prevention of Tobacco Induced Diseases (ISPTID)
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751989/ https://www.ncbi.nlm.nih.gov/pubmed/31582929 http://dx.doi.org/10.18332/tid/104577 |
Sumario: | INTRODUCTION: Secondhand smoke (SHS) in the home is a serious cause of ill-health, especially for children. SHS indoors can be indirectly measured using particulate matter monitors, and interventions have been developed using feedback from these monitors to encourage smoke-free homes. These interventions often use data that are several days out of date, as the data must be downloaded manually from monitors. It would be advantageous to access this information remotely in real-time to provide faster feedback to intervention participants. METHODS: Using off-the-shelf computer components and the Dylos DC1700 air quality monitor, a portable internet-connected monitor was developed that can send data to a server remotely. Four of these monitors were tested in homes in Israel to test the reliability of the connection. Data were downloaded from the monitor’s onboard memory and compared to the data sent to the server. RESULTS: Eight homes were monitored for 4 to 6 days, with a combined total count of 44 days. Less than 1% of data was lost, with no outage lasting longer than 1 hour 45 minutes. There was no significant difference in the mean concentrations measured in homes between mobile-transmitted data and data downloaded directly. CONCLUSIONS: This system appears to be a reliable way to monitor remotely home air quality for use in intervention studies, and could potentially have applications in other related research. Laboratories that own Dylos DC1700s may wish to consider converting them to such a system to obtain a cost-effective way of overcoming limitations in the Dylos design. |
---|