Cargando…
The functional convergence of antibiotic resistance in β‐lactamases is not conferred by a simple convergent substitution of amino acid
Bacterial resistance to antibiotics is a serious medical and public health concern worldwide. Such resistance is conferred by a variety of mechanisms, but the extensive variability in levels of resistance across bacteria is a common finding. Understanding the underlying evolutionary processes govern...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752183/ https://www.ncbi.nlm.nih.gov/pubmed/31548859 http://dx.doi.org/10.1111/eva.12835 |
_version_ | 1783452747579785216 |
---|---|
author | Keshri, Vivek Arbuckle, Kevin Chabrol, Olivier Rolain, Jean‐Marc Raoult, Didier Pontarotti, Pierre |
author_facet | Keshri, Vivek Arbuckle, Kevin Chabrol, Olivier Rolain, Jean‐Marc Raoult, Didier Pontarotti, Pierre |
author_sort | Keshri, Vivek |
collection | PubMed |
description | Bacterial resistance to antibiotics is a serious medical and public health concern worldwide. Such resistance is conferred by a variety of mechanisms, but the extensive variability in levels of resistance across bacteria is a common finding. Understanding the underlying evolutionary processes governing this functional variation in antibiotic resistance is important as it may allow the development of appropriate strategies to improve treatment options for bacterial infections. The main objective of this study was to examine the functional evolution of β‐lactamases, a common mechanism of enzymatic resistance that inactivates a widely used class of antibiotics. We first obtained β‐lactamase protein sequences and minimal inhibitory concentration (MIC), a measure of antibiotic function, from previously published literature. We then used a molecular phylogenetic framework to examine the evolution of β‐lactamase functional activity. We found that the functional activity of antibiotic resistance mediated by β‐lactamase has evolved in a convergent manner within molecular classes, but is not associated with any single amino acid substitution. This suggests that the dynamics of convergent evolution in this system can vary between the functional and molecular (sequence) levels. Such disassociation may hamper bioinformatic approaches to antibiotic resistance determination and underscore the need for (less efficient but more effective) activity assays as an essential step in evaluating resistance in a given case. |
format | Online Article Text |
id | pubmed-6752183 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67521832019-09-23 The functional convergence of antibiotic resistance in β‐lactamases is not conferred by a simple convergent substitution of amino acid Keshri, Vivek Arbuckle, Kevin Chabrol, Olivier Rolain, Jean‐Marc Raoult, Didier Pontarotti, Pierre Evol Appl Original Articles Bacterial resistance to antibiotics is a serious medical and public health concern worldwide. Such resistance is conferred by a variety of mechanisms, but the extensive variability in levels of resistance across bacteria is a common finding. Understanding the underlying evolutionary processes governing this functional variation in antibiotic resistance is important as it may allow the development of appropriate strategies to improve treatment options for bacterial infections. The main objective of this study was to examine the functional evolution of β‐lactamases, a common mechanism of enzymatic resistance that inactivates a widely used class of antibiotics. We first obtained β‐lactamase protein sequences and minimal inhibitory concentration (MIC), a measure of antibiotic function, from previously published literature. We then used a molecular phylogenetic framework to examine the evolution of β‐lactamase functional activity. We found that the functional activity of antibiotic resistance mediated by β‐lactamase has evolved in a convergent manner within molecular classes, but is not associated with any single amino acid substitution. This suggests that the dynamics of convergent evolution in this system can vary between the functional and molecular (sequence) levels. Such disassociation may hamper bioinformatic approaches to antibiotic resistance determination and underscore the need for (less efficient but more effective) activity assays as an essential step in evaluating resistance in a given case. John Wiley and Sons Inc. 2019-07-18 /pmc/articles/PMC6752183/ /pubmed/31548859 http://dx.doi.org/10.1111/eva.12835 Text en © 2019 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Keshri, Vivek Arbuckle, Kevin Chabrol, Olivier Rolain, Jean‐Marc Raoult, Didier Pontarotti, Pierre The functional convergence of antibiotic resistance in β‐lactamases is not conferred by a simple convergent substitution of amino acid |
title | The functional convergence of antibiotic resistance in β‐lactamases is not conferred by a simple convergent substitution of amino acid |
title_full | The functional convergence of antibiotic resistance in β‐lactamases is not conferred by a simple convergent substitution of amino acid |
title_fullStr | The functional convergence of antibiotic resistance in β‐lactamases is not conferred by a simple convergent substitution of amino acid |
title_full_unstemmed | The functional convergence of antibiotic resistance in β‐lactamases is not conferred by a simple convergent substitution of amino acid |
title_short | The functional convergence of antibiotic resistance in β‐lactamases is not conferred by a simple convergent substitution of amino acid |
title_sort | functional convergence of antibiotic resistance in β‐lactamases is not conferred by a simple convergent substitution of amino acid |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752183/ https://www.ncbi.nlm.nih.gov/pubmed/31548859 http://dx.doi.org/10.1111/eva.12835 |
work_keys_str_mv | AT keshrivivek thefunctionalconvergenceofantibioticresistanceinblactamasesisnotconferredbyasimpleconvergentsubstitutionofaminoacid AT arbucklekevin thefunctionalconvergenceofantibioticresistanceinblactamasesisnotconferredbyasimpleconvergentsubstitutionofaminoacid AT chabrololivier thefunctionalconvergenceofantibioticresistanceinblactamasesisnotconferredbyasimpleconvergentsubstitutionofaminoacid AT rolainjeanmarc thefunctionalconvergenceofantibioticresistanceinblactamasesisnotconferredbyasimpleconvergentsubstitutionofaminoacid AT raoultdidier thefunctionalconvergenceofantibioticresistanceinblactamasesisnotconferredbyasimpleconvergentsubstitutionofaminoacid AT pontarottipierre thefunctionalconvergenceofantibioticresistanceinblactamasesisnotconferredbyasimpleconvergentsubstitutionofaminoacid AT keshrivivek functionalconvergenceofantibioticresistanceinblactamasesisnotconferredbyasimpleconvergentsubstitutionofaminoacid AT arbucklekevin functionalconvergenceofantibioticresistanceinblactamasesisnotconferredbyasimpleconvergentsubstitutionofaminoacid AT chabrololivier functionalconvergenceofantibioticresistanceinblactamasesisnotconferredbyasimpleconvergentsubstitutionofaminoacid AT rolainjeanmarc functionalconvergenceofantibioticresistanceinblactamasesisnotconferredbyasimpleconvergentsubstitutionofaminoacid AT raoultdidier functionalconvergenceofantibioticresistanceinblactamasesisnotconferredbyasimpleconvergentsubstitutionofaminoacid AT pontarottipierre functionalconvergenceofantibioticresistanceinblactamasesisnotconferredbyasimpleconvergentsubstitutionofaminoacid |