Cargando…
Automatic Tumor Segmentation With a Convolutional Neural Network in Multiparametric MRI: Influence of Distortion Correction
Precise tumor segmentation is a crucial task in radiation therapy planning. Convolutional neural networks (CNNs) are among the highest scoring automatic approaches for tumor segmentation. We investigate the difference in segmentation performance of geometrically distorted and corrected diffusion-wei...
Autores principales: | Bielak, Lars, Wiedenmann, Nicole, Nicolay, Nils Henrik, Lottner, Thomas, Fischer, Johannes, Bunea, Hatice, Grosu, Anca-Ligia, Bock, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752289/ https://www.ncbi.nlm.nih.gov/pubmed/31572790 http://dx.doi.org/10.18383/j.tom.2019.00010 |
Ejemplares similares
-
Convolutional neural networks for head and neck tumor segmentation on 7-channel multiparametric MRI: a leave-one-out analysis
por: Bielak, Lars, et al.
Publicado: (2020) -
Effect of radiochemotherapy on T2* MRI in HNSCC and its relation to FMISO PET derived hypoxia and FDG PET
por: Wiedenmann, Nicole, et al.
Publicado: (2018) -
Correction to: Effect of radiochemotherapy on T2* MRI in HNSCC and its relation to FMISO PET derived hypoxia and FDG PET
por: Wiedenmann, Nicole, et al.
Publicado: (2018) -
De-Escalation Strategies of (Chemo)Radiation for Head-and-Neck Squamous Cell Cancers—HPV and Beyond
por: Rühle, Alexander, et al.
Publicado: (2021) -
The Particle Radiobiology of Multipotent Mesenchymal Stromal Cells: A Key to Mitigating Radiation-Induced Tissue Toxicities in Cancer Treatment and Beyond?
por: Rühle, Alexander, et al.
Publicado: (2021)