Cargando…
Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans
Identifying gene-environment interactions (GxEs) contributing to human cardiometabolic disorders is challenging. Here we apply a reverse GxE candidate search by deriving candidate variants from promoter-enhancer interactions that respond to dietary fatty acid challenge through altered chromatin acce...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752726/ https://www.ncbi.nlm.nih.gov/pubmed/31538139 http://dx.doi.org/10.1038/s42255-019-0071-6 |
_version_ | 1783452775895531520 |
---|---|
author | Garske, Kristina M. Pan, David Z. Miao, Zong Bhagat, Yash V. Comenho, Caroline Robles, Christopher R. Benhammou, Jihane N. Alvarez, Marcus Ko, Arthur Ye, Chun Jimmie Pisegna, Joseph R. Mohlke, Karen L. Sinsheimer, Janet S. Laakso, Markku Pajukanta, Päivi |
author_facet | Garske, Kristina M. Pan, David Z. Miao, Zong Bhagat, Yash V. Comenho, Caroline Robles, Christopher R. Benhammou, Jihane N. Alvarez, Marcus Ko, Arthur Ye, Chun Jimmie Pisegna, Joseph R. Mohlke, Karen L. Sinsheimer, Janet S. Laakso, Markku Pajukanta, Päivi |
author_sort | Garske, Kristina M. |
collection | PubMed |
description | Identifying gene-environment interactions (GxEs) contributing to human cardiometabolic disorders is challenging. Here we apply a reverse GxE candidate search by deriving candidate variants from promoter-enhancer interactions that respond to dietary fatty acid challenge through altered chromatin accessibility in human primary adipocytes. We then test all variants residing in the lipid-responsive open chromatin sites within adipocyte promoter-enhancer contacts for interaction effects between the genotype and dietary saturated fat intake on body mass index (BMI) in the UK Biobank. We discover 14 novel GxE variants in 12 lipid-responsive promoters, including well-known lipid genes (LIPE, CARM1, and PLIN2) and novel genes, such as LDB3, for which we provide further functional and integrative genomics evidence. We further identify 24 GxE variants in enhancers, totaling 38 new GxE variants for BMI in the UK Biobank, demonstrating that molecular genomics data produced in physiologically relevant contexts can discover new functional GxE mechanisms in humans. |
format | Online Article Text |
id | pubmed-6752726 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-67527262019-12-14 Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans Garske, Kristina M. Pan, David Z. Miao, Zong Bhagat, Yash V. Comenho, Caroline Robles, Christopher R. Benhammou, Jihane N. Alvarez, Marcus Ko, Arthur Ye, Chun Jimmie Pisegna, Joseph R. Mohlke, Karen L. Sinsheimer, Janet S. Laakso, Markku Pajukanta, Päivi Nat Metab Article Identifying gene-environment interactions (GxEs) contributing to human cardiometabolic disorders is challenging. Here we apply a reverse GxE candidate search by deriving candidate variants from promoter-enhancer interactions that respond to dietary fatty acid challenge through altered chromatin accessibility in human primary adipocytes. We then test all variants residing in the lipid-responsive open chromatin sites within adipocyte promoter-enhancer contacts for interaction effects between the genotype and dietary saturated fat intake on body mass index (BMI) in the UK Biobank. We discover 14 novel GxE variants in 12 lipid-responsive promoters, including well-known lipid genes (LIPE, CARM1, and PLIN2) and novel genes, such as LDB3, for which we provide further functional and integrative genomics evidence. We further identify 24 GxE variants in enhancers, totaling 38 new GxE variants for BMI in the UK Biobank, demonstrating that molecular genomics data produced in physiologically relevant contexts can discover new functional GxE mechanisms in humans. 2019-06-14 2019-06 /pmc/articles/PMC6752726/ /pubmed/31538139 http://dx.doi.org/10.1038/s42255-019-0071-6 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Garske, Kristina M. Pan, David Z. Miao, Zong Bhagat, Yash V. Comenho, Caroline Robles, Christopher R. Benhammou, Jihane N. Alvarez, Marcus Ko, Arthur Ye, Chun Jimmie Pisegna, Joseph R. Mohlke, Karen L. Sinsheimer, Janet S. Laakso, Markku Pajukanta, Päivi Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans |
title | Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans |
title_full | Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans |
title_fullStr | Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans |
title_full_unstemmed | Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans |
title_short | Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans |
title_sort | reverse gene-environment interaction approach to identify variants influencing body-mass index in humans |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752726/ https://www.ncbi.nlm.nih.gov/pubmed/31538139 http://dx.doi.org/10.1038/s42255-019-0071-6 |
work_keys_str_mv | AT garskekristinam reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans AT pandavidz reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans AT miaozong reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans AT bhagatyashv reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans AT comenhocaroline reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans AT robleschristopherr reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans AT benhammoujihanen reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans AT alvarezmarcus reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans AT koarthur reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans AT yechunjimmie reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans AT pisegnajosephr reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans AT mohlkekarenl reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans AT sinsheimerjanets reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans AT laaksomarkku reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans AT pajukantapaivi reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans |