Cargando…

Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans

Identifying gene-environment interactions (GxEs) contributing to human cardiometabolic disorders is challenging. Here we apply a reverse GxE candidate search by deriving candidate variants from promoter-enhancer interactions that respond to dietary fatty acid challenge through altered chromatin acce...

Descripción completa

Detalles Bibliográficos
Autores principales: Garske, Kristina M., Pan, David Z., Miao, Zong, Bhagat, Yash V., Comenho, Caroline, Robles, Christopher R., Benhammou, Jihane N., Alvarez, Marcus, Ko, Arthur, Ye, Chun Jimmie, Pisegna, Joseph R., Mohlke, Karen L., Sinsheimer, Janet S., Laakso, Markku, Pajukanta, Päivi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752726/
https://www.ncbi.nlm.nih.gov/pubmed/31538139
http://dx.doi.org/10.1038/s42255-019-0071-6
_version_ 1783452775895531520
author Garske, Kristina M.
Pan, David Z.
Miao, Zong
Bhagat, Yash V.
Comenho, Caroline
Robles, Christopher R.
Benhammou, Jihane N.
Alvarez, Marcus
Ko, Arthur
Ye, Chun Jimmie
Pisegna, Joseph R.
Mohlke, Karen L.
Sinsheimer, Janet S.
Laakso, Markku
Pajukanta, Päivi
author_facet Garske, Kristina M.
Pan, David Z.
Miao, Zong
Bhagat, Yash V.
Comenho, Caroline
Robles, Christopher R.
Benhammou, Jihane N.
Alvarez, Marcus
Ko, Arthur
Ye, Chun Jimmie
Pisegna, Joseph R.
Mohlke, Karen L.
Sinsheimer, Janet S.
Laakso, Markku
Pajukanta, Päivi
author_sort Garske, Kristina M.
collection PubMed
description Identifying gene-environment interactions (GxEs) contributing to human cardiometabolic disorders is challenging. Here we apply a reverse GxE candidate search by deriving candidate variants from promoter-enhancer interactions that respond to dietary fatty acid challenge through altered chromatin accessibility in human primary adipocytes. We then test all variants residing in the lipid-responsive open chromatin sites within adipocyte promoter-enhancer contacts for interaction effects between the genotype and dietary saturated fat intake on body mass index (BMI) in the UK Biobank. We discover 14 novel GxE variants in 12 lipid-responsive promoters, including well-known lipid genes (LIPE, CARM1, and PLIN2) and novel genes, such as LDB3, for which we provide further functional and integrative genomics evidence. We further identify 24 GxE variants in enhancers, totaling 38 new GxE variants for BMI in the UK Biobank, demonstrating that molecular genomics data produced in physiologically relevant contexts can discover new functional GxE mechanisms in humans.
format Online
Article
Text
id pubmed-6752726
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-67527262019-12-14 Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans Garske, Kristina M. Pan, David Z. Miao, Zong Bhagat, Yash V. Comenho, Caroline Robles, Christopher R. Benhammou, Jihane N. Alvarez, Marcus Ko, Arthur Ye, Chun Jimmie Pisegna, Joseph R. Mohlke, Karen L. Sinsheimer, Janet S. Laakso, Markku Pajukanta, Päivi Nat Metab Article Identifying gene-environment interactions (GxEs) contributing to human cardiometabolic disorders is challenging. Here we apply a reverse GxE candidate search by deriving candidate variants from promoter-enhancer interactions that respond to dietary fatty acid challenge through altered chromatin accessibility in human primary adipocytes. We then test all variants residing in the lipid-responsive open chromatin sites within adipocyte promoter-enhancer contacts for interaction effects between the genotype and dietary saturated fat intake on body mass index (BMI) in the UK Biobank. We discover 14 novel GxE variants in 12 lipid-responsive promoters, including well-known lipid genes (LIPE, CARM1, and PLIN2) and novel genes, such as LDB3, for which we provide further functional and integrative genomics evidence. We further identify 24 GxE variants in enhancers, totaling 38 new GxE variants for BMI in the UK Biobank, demonstrating that molecular genomics data produced in physiologically relevant contexts can discover new functional GxE mechanisms in humans. 2019-06-14 2019-06 /pmc/articles/PMC6752726/ /pubmed/31538139 http://dx.doi.org/10.1038/s42255-019-0071-6 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Garske, Kristina M.
Pan, David Z.
Miao, Zong
Bhagat, Yash V.
Comenho, Caroline
Robles, Christopher R.
Benhammou, Jihane N.
Alvarez, Marcus
Ko, Arthur
Ye, Chun Jimmie
Pisegna, Joseph R.
Mohlke, Karen L.
Sinsheimer, Janet S.
Laakso, Markku
Pajukanta, Päivi
Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans
title Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans
title_full Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans
title_fullStr Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans
title_full_unstemmed Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans
title_short Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans
title_sort reverse gene-environment interaction approach to identify variants influencing body-mass index in humans
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752726/
https://www.ncbi.nlm.nih.gov/pubmed/31538139
http://dx.doi.org/10.1038/s42255-019-0071-6
work_keys_str_mv AT garskekristinam reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans
AT pandavidz reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans
AT miaozong reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans
AT bhagatyashv reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans
AT comenhocaroline reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans
AT robleschristopherr reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans
AT benhammoujihanen reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans
AT alvarezmarcus reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans
AT koarthur reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans
AT yechunjimmie reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans
AT pisegnajosephr reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans
AT mohlkekarenl reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans
AT sinsheimerjanets reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans
AT laaksomarkku reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans
AT pajukantapaivi reversegeneenvironmentinteractionapproachtoidentifyvariantsinfluencingbodymassindexinhumans