Cargando…
A self-adaptive deep learning method for automated eye laterality detection based on color fundus photography
PURPOSE: To provide a self-adaptive deep learning (DL) method to automatically detect the eye laterality based on fundus images. METHODS: A total of 18394 fundus images with real-world eye laterality labels were used for model development and internal validation. A separate dataset of 2000 fundus im...
Autores principales: | Liu, Chi, Han, Xiaotong, Li, Zhixi, Ha, Jason, Peng, Guankai, Meng, Wei, He, Mingguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752776/ https://www.ncbi.nlm.nih.gov/pubmed/31536537 http://dx.doi.org/10.1371/journal.pone.0222025 |
Ejemplares similares
-
A deep learning model for generating fundus autofluorescence images from color fundus photography
por: Song, Fan, et al.
Publicado: (2023) -
Translation of Color Fundus Photography into Fluorescein Angiography Using Deep Learning for Enhanced Diabetic Retinopathy Screening
por: Shi, Danli, et al.
Publicado: (2023) -
Analysis of Color Consistency in Retinal Fundus Photography: Application of Color Management and Development of an Eye Model Standard
por: Sisson, Christye P., et al.
Publicado: (2014) -
Automated detection of age-related macular degeneration in color fundus photography: a systematic review
por: Pead, Emma, et al.
Publicado: (2019) -
Comparison of Color Fundus Photography, Infrared Fundus Photography, and Optical Coherence Tomography in Detecting Retinal Hamartoma in Patients with Tuberous Sclerosis Complex
por: Bai, Da-Yong, et al.
Publicado: (2016)