Cargando…
Development and verification of prediction models for preventing cardiovascular diseases
OBJECTIVES: Cardiovascular disease (CVD) is one of the major causes of death worldwide. For improved accuracy of CVD prediction, risk classification was performed using national time-series health examination data. The data offers an opportunity to access deep learning (RNN-LSTM), which is widely kn...
Autores principales: | Sung, Ji Min, Cho, In-Jeong, Sung, David, Kim, Sunhee, Kim, Hyeon Chang, Chae, Myeong-Hun, Kavousi, Maryam, Rueda-Ochoa, Oscar L., Ikram, M. Arfan, Franco, Oscar H., Chang, Hyuk-Jae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752799/ https://www.ncbi.nlm.nih.gov/pubmed/31536581 http://dx.doi.org/10.1371/journal.pone.0222809 |
Ejemplares similares
-
Development and External Validation of a Deep Learning Algorithm for Prognostication of Cardiovascular Outcomes
por: Cho, In-Jeong, et al.
Publicado: (2019) -
Arterial calcification at multiple sites: sex-specific cardiovascular risk profiles and mortality risk—the Rotterdam Study
por: van der Toorn, Janine E., et al.
Publicado: (2020) -
Impact of physical activity on the association of overweight and obesity with cardiovascular disease: The Rotterdam Study
por: Koolhaas, Chantal M, et al.
Publicado: (2017) -
Trajectories of body mass index before the diagnosis of cardiovascular disease: a latent class trajectory analysis
por: Dhana, Klodian, et al.
Publicado: (2016) -
Assessing gaps in cholesterol treatment guidelines for primary prevention of cardiovascular disease based on available randomised clinical trial evidence: The Rotterdam Study
por: Pavlović, Jelena, et al.
Publicado: (2017)