Cargando…
Using path signatures to predict a diagnosis of Alzheimer’s disease
The path signature is a means of feature generation that can encode nonlinear interactions in data in addition to the usual linear terms. It provides interpretable features and its output is a fixed length vector irrespective of the number of input points or their sample times. In this paper we use...
Autores principales: | Moore, P. J., Lyons, T. J., Gallacher, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752804/ https://www.ncbi.nlm.nih.gov/pubmed/31536538 http://dx.doi.org/10.1371/journal.pone.0222212 |
Ejemplares similares
-
Random forest prediction of Alzheimer’s disease using pairwise selection from time series data
por: Moore, P. J., et al.
Publicado: (2019) -
Path integration selectively predicts midlife risk of Alzheimer’s disease
por: Newton, Coco, et al.
Publicado: (2023) -
Modeling Path Importance for Effective Alzheimer’s Disease Drug
Repurposing
por: Xiang, Shunian, et al.
Publicado: (2023) -
Predicting the path of pollutants.
por: Manuel, J
Publicado: (1995) -
Alzheimer's disease therapeutic research: the path forward
por: Aisen, Paul S
Publicado: (2009)