Cargando…

Dual-Subpopulation as reciprocal optional external archives for differential evolution

Differential Evolution (DE) is powerful for global optimization problems. Among DE algorithms, JADE and its variants, whose mutation strategy is DE/current-to-pbest/1 with optional archive, have good performance. A significant feature of the above mutation strategy is that one individual for differe...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Haiming, Wang, Zaichao, Fan, Yiqun, Li, Chengjun, Yao, Juan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752808/
https://www.ncbi.nlm.nih.gov/pubmed/31536535
http://dx.doi.org/10.1371/journal.pone.0222103
Descripción
Sumario:Differential Evolution (DE) is powerful for global optimization problems. Among DE algorithms, JADE and its variants, whose mutation strategy is DE/current-to-pbest/1 with optional archive, have good performance. A significant feature of the above mutation strategy is that one individual for difference operation comes from the union of the optional external archive and the population. In existing DE algorithms based on the mutation strategy—JADE and its variants, individuals eliminated from the population are send to the archive. In this paper, we propose a scheme for managing the optional external archive. According to our scheme, two subpopulations are maintained in the population. Each of them regards the other as the archive. In experiments, our scheme is applied in JADE and two of its variants—SHADE and L-SHADE. Experimental results show that our scheme can enhance JADE and its variants. Moreover, it can be seen that L-SHADE with our scheme performs significantly better than four DE algorithms, CoBiDE, MPEDE, EDEV, and MLCCDE.