Cargando…
Muscle oxygenation maintained during repeated-sprints despite inspiratory muscle loading
A high work of breathing can compromise limb oxygen delivery during sustained high-intensity exercise. However, it is unclear if the same is true for intermittent sprint exercise. This project examined the effect of adding an inspiratory load on locomotor muscle tissue reoxygenation during repeated-...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752892/ https://www.ncbi.nlm.nih.gov/pubmed/31536522 http://dx.doi.org/10.1371/journal.pone.0222487 |
_version_ | 1783452806607273984 |
---|---|
author | Rodriguez, Ramón F. Townsend, Nathan E. Aughey, Robert J. Billaut, François |
author_facet | Rodriguez, Ramón F. Townsend, Nathan E. Aughey, Robert J. Billaut, François |
author_sort | Rodriguez, Ramón F. |
collection | PubMed |
description | A high work of breathing can compromise limb oxygen delivery during sustained high-intensity exercise. However, it is unclear if the same is true for intermittent sprint exercise. This project examined the effect of adding an inspiratory load on locomotor muscle tissue reoxygenation during repeated-sprint exercise. Ten healthy males completed three experiment sessions of ten 10-s sprints, separated by 30-s of passive rest on a cycle ergometer. The first two sessions were “all-out’ efforts performed without (CTRL) or with inspiratory loading (INSP) in a randomised and counterbalanced order. The third experiment session (MATCH) consisted of ten 10-s work-matched intervals. Tissue saturation index (TSI) and deoxy-haemoglobin (HHb) of the vastus lateralis and sixth intercostal space was monitored with near-infrared spectroscopy. Vastus lateralis reoxygenation (ΔReoxy) was calculated as the difference from peak HHb (sprint) to nadir HHb (recovery). Total mechanical work completed was similar between INSP and CTRL (effect size: -0.18, 90% confidence limit ±0.43), and differences in vastus lateralis TSI during the sprint (-0.01 ±0.33) and recovery (-0.08 ±0.50) phases were unclear. There was also no meaningful difference in ΔReoxy (0.21 ±0.37). Intercostal HHb was higher in the INSP session compared to CTRL (0.42 ±0.34), whilst the difference was unclear for TSI (-0.01 ±0.33). During MATCH exercise, differences in vastus lateralis TSI were unclear compared to INSP for both sprint (0.10 ±0.30) and recovery (-0.09 ±0.48) phases, and there was no meaningful difference in ΔReoxy (-0.25 ±0.55). Intercostal TSI was higher during MATCH compared to INSP (0.95 ±0.53), whereas HHb was lower (-1.09 ±0.33). The lack of difference in ΔReoxy between INSP and CTRL suggests that for intermittent sprint exercise, the metabolic O(2) demands of both the respiratory and locomotor muscles can be met. Additionally, the similarity of the MATCH suggests that ΔReoxy was maximal in all exercise conditions. |
format | Online Article Text |
id | pubmed-6752892 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-67528922019-09-27 Muscle oxygenation maintained during repeated-sprints despite inspiratory muscle loading Rodriguez, Ramón F. Townsend, Nathan E. Aughey, Robert J. Billaut, François PLoS One Research Article A high work of breathing can compromise limb oxygen delivery during sustained high-intensity exercise. However, it is unclear if the same is true for intermittent sprint exercise. This project examined the effect of adding an inspiratory load on locomotor muscle tissue reoxygenation during repeated-sprint exercise. Ten healthy males completed three experiment sessions of ten 10-s sprints, separated by 30-s of passive rest on a cycle ergometer. The first two sessions were “all-out’ efforts performed without (CTRL) or with inspiratory loading (INSP) in a randomised and counterbalanced order. The third experiment session (MATCH) consisted of ten 10-s work-matched intervals. Tissue saturation index (TSI) and deoxy-haemoglobin (HHb) of the vastus lateralis and sixth intercostal space was monitored with near-infrared spectroscopy. Vastus lateralis reoxygenation (ΔReoxy) was calculated as the difference from peak HHb (sprint) to nadir HHb (recovery). Total mechanical work completed was similar between INSP and CTRL (effect size: -0.18, 90% confidence limit ±0.43), and differences in vastus lateralis TSI during the sprint (-0.01 ±0.33) and recovery (-0.08 ±0.50) phases were unclear. There was also no meaningful difference in ΔReoxy (0.21 ±0.37). Intercostal HHb was higher in the INSP session compared to CTRL (0.42 ±0.34), whilst the difference was unclear for TSI (-0.01 ±0.33). During MATCH exercise, differences in vastus lateralis TSI were unclear compared to INSP for both sprint (0.10 ±0.30) and recovery (-0.09 ±0.48) phases, and there was no meaningful difference in ΔReoxy (-0.25 ±0.55). Intercostal TSI was higher during MATCH compared to INSP (0.95 ±0.53), whereas HHb was lower (-1.09 ±0.33). The lack of difference in ΔReoxy between INSP and CTRL suggests that for intermittent sprint exercise, the metabolic O(2) demands of both the respiratory and locomotor muscles can be met. Additionally, the similarity of the MATCH suggests that ΔReoxy was maximal in all exercise conditions. Public Library of Science 2019-09-19 /pmc/articles/PMC6752892/ /pubmed/31536522 http://dx.doi.org/10.1371/journal.pone.0222487 Text en © 2019 Rodriguez et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Rodriguez, Ramón F. Townsend, Nathan E. Aughey, Robert J. Billaut, François Muscle oxygenation maintained during repeated-sprints despite inspiratory muscle loading |
title | Muscle oxygenation maintained during repeated-sprints despite inspiratory muscle loading |
title_full | Muscle oxygenation maintained during repeated-sprints despite inspiratory muscle loading |
title_fullStr | Muscle oxygenation maintained during repeated-sprints despite inspiratory muscle loading |
title_full_unstemmed | Muscle oxygenation maintained during repeated-sprints despite inspiratory muscle loading |
title_short | Muscle oxygenation maintained during repeated-sprints despite inspiratory muscle loading |
title_sort | muscle oxygenation maintained during repeated-sprints despite inspiratory muscle loading |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752892/ https://www.ncbi.nlm.nih.gov/pubmed/31536522 http://dx.doi.org/10.1371/journal.pone.0222487 |
work_keys_str_mv | AT rodriguezramonf muscleoxygenationmaintainedduringrepeatedsprintsdespiteinspiratorymuscleloading AT townsendnathane muscleoxygenationmaintainedduringrepeatedsprintsdespiteinspiratorymuscleloading AT augheyrobertj muscleoxygenationmaintainedduringrepeatedsprintsdespiteinspiratorymuscleloading AT billautfrancois muscleoxygenationmaintainedduringrepeatedsprintsdespiteinspiratorymuscleloading |