Cargando…
Hexokinase is necessary for glucose-mediated photosynthesis repression and lipid accumulation in a green alga
Global primary production is driven largely by oxygenic photosynthesis, with algae as major contributors. The green alga Chromochloris zofingiensis reversibly switches off photosynthesis in the presence of glucose in the light and augments production of biofuel precursors (triacylglycerols) and the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753101/ https://www.ncbi.nlm.nih.gov/pubmed/31552300 http://dx.doi.org/10.1038/s42003-019-0577-1 |
Sumario: | Global primary production is driven largely by oxygenic photosynthesis, with algae as major contributors. The green alga Chromochloris zofingiensis reversibly switches off photosynthesis in the presence of glucose in the light and augments production of biofuel precursors (triacylglycerols) and the high-value antioxidant astaxanthin. Here we used forward genetics to reveal that this photosynthetic and metabolic switch is mediated by the glycolytic enzyme hexokinase (CzHXK1). In contrast to wild-type, glucose-treated hxk1 mutants do not shut off photosynthesis or accumulate astaxanthin, triacylglycerols, or cytoplasmic lipid droplets. We show that CzHXK1 is critical for the regulation of genes related to photosynthesis, ketocarotenoid synthesis and fatty acid biosynthesis. Sugars play fundamental regulatory roles in gene expression, physiology, metabolism, and growth in plants and animals, and we introduce a relatively simple, emerging model system to investigate conserved eukaryotic sugar sensing and signaling at the base of the green lineage. |
---|