Cargando…

Interactions between Kuroshio Extension and Central Tropical Pacific lead to preferred decadal-timescale oscillations in Pacific climate

The Kuroshio Extension (KE) exhibits prominent decadal fluctuations that enhance the low-frequency variability of North Pacific climate. Using available observations, we show evidence that a preferred decadal timescale in the KE emerges from the interaction between KE and the central tropical Pacifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Joh, Youngji, Di Lorenzo, Emanuele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753113/
https://www.ncbi.nlm.nih.gov/pubmed/31537887
http://dx.doi.org/10.1038/s41598-019-49927-y
Descripción
Sumario:The Kuroshio Extension (KE) exhibits prominent decadal fluctuations that enhance the low-frequency variability of North Pacific climate. Using available observations, we show evidence that a preferred decadal timescale in the KE emerges from the interaction between KE and the central tropical Pacific via Meridional Modes. Specifically, we show that changes in the KE states apply a persistent downstream atmospheric response (e.g. wind stress curl, 0–12 months timescales) that projects on the atmospheric forcing of the Pacific Meridional Modes (PMM) over 9 months timescales. Subsequently, the PMM energizes the central tropical Pacific El Niño Southern Oscillation (CP-ENSO) and its atmospheric teleconnections back to the Northern Hemisphere (1–3 months timescale), which in turn excites oceanic Rossby waves in the central/eastern North Pacific that propagate westward changing the KE (~3 years timescales). Consistent with this hypothesis, the cross-correlation function between the KE and the PMM/CP-ENSO indices exhibits a significant sinusoidal shape corresponding to a preferred spectral power at decadal timescales (~10 years). This dynamics pathway (KE→PMM/CP-ENSO→KE) may provide a new mechanistic basis to explain the preferred decadal-timescale of the North Pacific and enhance decadal predictability of Pacific climate.