Cargando…

Neck Muscle Changes Following Long-Duration Spaceflight

The effects of long-duration spaceflight on crewmember neck musculature have not been adequately studied. The purpose of this study was to evaluate the changes in the neck musculature on pre-flight and post-flight magnetic resonance imaging (MRI) examinations of six crewmembers on 4- to 6-month miss...

Descripción completa

Detalles Bibliográficos
Autores principales: McNamara, Kyle P., Greene, Katelyn A., Tooze, Janet A., Dang, Jade, Khattab, Karim, Lenchik, Leon, Weaver, Ashley A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753191/
https://www.ncbi.nlm.nih.gov/pubmed/31572205
http://dx.doi.org/10.3389/fphys.2019.01115
_version_ 1783452848823992320
author McNamara, Kyle P.
Greene, Katelyn A.
Tooze, Janet A.
Dang, Jade
Khattab, Karim
Lenchik, Leon
Weaver, Ashley A.
author_facet McNamara, Kyle P.
Greene, Katelyn A.
Tooze, Janet A.
Dang, Jade
Khattab, Karim
Lenchik, Leon
Weaver, Ashley A.
author_sort McNamara, Kyle P.
collection PubMed
description The effects of long-duration spaceflight on crewmember neck musculature have not been adequately studied. The purpose of this study was to evaluate the changes in the neck musculature on pre-flight and post-flight magnetic resonance imaging (MRI) examinations of six crewmembers on 4- to 6-month missions equipped with the advanced resistive exercise device (aRED). The MRI images were resliced to remove variations in spinal curvature, the cross-sectional area (CSA), and muscle fat infiltration (MFI) of neck musculature at the C1-C2, C4-C5, C7-T1, and T1-T2 intervertebral disc levels were measured bilaterally. Percent changes in the neck muscle CSA and fatty infiltration following spaceflight were calculated, and mixed models were used to assess significance of these changes. Crewmembers on missions equipped with the aRED experienced an average 25.1% increase in CSA for the trapezius muscle at C6-C7, an average 11.5% increase in CSA for the semispinalis capitis muscle at C4-C5, an average 9.0% increase in CSA for the sternocleidomastoid muscle at C4-C5, and an average 23.1% increase in CSA for the rhomboid minor at T1-T2. There were no significant changes in the CSA of the levator scapulae, splenius capitis, rectus capitis posterior major, scalenus anterior, scalenus posterior, scalenus medius, longissimus capitis, or obliquus capitis inferior muscles at the locations measured. None of the muscles analyzed experienced statistically significant changes in fatty infiltration with spaceflight. Our study indicates that long-duration spaceflight conditions are associated with preservation of CSA in most neck muscles and significant increases in the CSAs of the trapezius, semispinalis capitis, sternocleidomastoid, and rhomboid minor muscles. This may indicate that cervical muscles are not subjected to the same degradative effects microgravity imparts on the majority of muscles.
format Online
Article
Text
id pubmed-6753191
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-67531912019-09-30 Neck Muscle Changes Following Long-Duration Spaceflight McNamara, Kyle P. Greene, Katelyn A. Tooze, Janet A. Dang, Jade Khattab, Karim Lenchik, Leon Weaver, Ashley A. Front Physiol Physiology The effects of long-duration spaceflight on crewmember neck musculature have not been adequately studied. The purpose of this study was to evaluate the changes in the neck musculature on pre-flight and post-flight magnetic resonance imaging (MRI) examinations of six crewmembers on 4- to 6-month missions equipped with the advanced resistive exercise device (aRED). The MRI images were resliced to remove variations in spinal curvature, the cross-sectional area (CSA), and muscle fat infiltration (MFI) of neck musculature at the C1-C2, C4-C5, C7-T1, and T1-T2 intervertebral disc levels were measured bilaterally. Percent changes in the neck muscle CSA and fatty infiltration following spaceflight were calculated, and mixed models were used to assess significance of these changes. Crewmembers on missions equipped with the aRED experienced an average 25.1% increase in CSA for the trapezius muscle at C6-C7, an average 11.5% increase in CSA for the semispinalis capitis muscle at C4-C5, an average 9.0% increase in CSA for the sternocleidomastoid muscle at C4-C5, and an average 23.1% increase in CSA for the rhomboid minor at T1-T2. There were no significant changes in the CSA of the levator scapulae, splenius capitis, rectus capitis posterior major, scalenus anterior, scalenus posterior, scalenus medius, longissimus capitis, or obliquus capitis inferior muscles at the locations measured. None of the muscles analyzed experienced statistically significant changes in fatty infiltration with spaceflight. Our study indicates that long-duration spaceflight conditions are associated with preservation of CSA in most neck muscles and significant increases in the CSAs of the trapezius, semispinalis capitis, sternocleidomastoid, and rhomboid minor muscles. This may indicate that cervical muscles are not subjected to the same degradative effects microgravity imparts on the majority of muscles. Frontiers Media S.A. 2019-09-13 /pmc/articles/PMC6753191/ /pubmed/31572205 http://dx.doi.org/10.3389/fphys.2019.01115 Text en Copyright © 2019 McNamara, Greene, Tooze, Dang, Khattab, Lenchik and Weaver. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
McNamara, Kyle P.
Greene, Katelyn A.
Tooze, Janet A.
Dang, Jade
Khattab, Karim
Lenchik, Leon
Weaver, Ashley A.
Neck Muscle Changes Following Long-Duration Spaceflight
title Neck Muscle Changes Following Long-Duration Spaceflight
title_full Neck Muscle Changes Following Long-Duration Spaceflight
title_fullStr Neck Muscle Changes Following Long-Duration Spaceflight
title_full_unstemmed Neck Muscle Changes Following Long-Duration Spaceflight
title_short Neck Muscle Changes Following Long-Duration Spaceflight
title_sort neck muscle changes following long-duration spaceflight
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753191/
https://www.ncbi.nlm.nih.gov/pubmed/31572205
http://dx.doi.org/10.3389/fphys.2019.01115
work_keys_str_mv AT mcnamarakylep neckmusclechangesfollowinglongdurationspaceflight
AT greenekatelyna neckmusclechangesfollowinglongdurationspaceflight
AT toozejaneta neckmusclechangesfollowinglongdurationspaceflight
AT dangjade neckmusclechangesfollowinglongdurationspaceflight
AT khattabkarim neckmusclechangesfollowinglongdurationspaceflight
AT lenchikleon neckmusclechangesfollowinglongdurationspaceflight
AT weaverashleya neckmusclechangesfollowinglongdurationspaceflight