Cargando…
An external ventricular drainage catheter impregnated with rifampicin, trimethoprim and triclosan, with extended activity against MDR Gram-negative bacteria: an in vitro and in vivo study
BACKGROUND: External ventricular drainage (EVD) carries a high risk of ventriculitis, increasingly caused by MDR Gram-negative bacteria such as Escherichia coli and Acinetobacter baumannii. Existing antimicrobial EVD catheters are not effective against these, and we have developed a catheter with ac...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753475/ https://www.ncbi.nlm.nih.gov/pubmed/31302702 http://dx.doi.org/10.1093/jac/dkz293 |
_version_ | 1783452895942803456 |
---|---|
author | Bayston, Roger Ashraf, Waheed Pelegrin, Ivan Fowkes, Katherine Bienemann, Alison S Singleton, William G B Scott, Ian S |
author_facet | Bayston, Roger Ashraf, Waheed Pelegrin, Ivan Fowkes, Katherine Bienemann, Alison S Singleton, William G B Scott, Ian S |
author_sort | Bayston, Roger |
collection | PubMed |
description | BACKGROUND: External ventricular drainage (EVD) carries a high risk of ventriculitis, increasingly caused by MDR Gram-negative bacteria such as Escherichia coli and Acinetobacter baumannii. Existing antimicrobial EVD catheters are not effective against these, and we have developed a catheter with activity against MDR bacteria and demonstrated the safety of the new formulation for use in the brain. OBJECTIVES: Our aim was to determine the ability of a newly formulated impregnated EVD catheters to withstand challenge with MDR Gram-negative bacteria and to obtain information about its safety for use in the CNS. METHODS: Catheters impregnated with three antimicrobials (rifampicin, trimethoprim and triclosan) were challenged in flow conditions at four weekly timepoints with high doses of MDR bacteria, including MRSA and Acinetobacter, and monitored for bacterial colonization. Catheter segments were also inserted intracerebrally into Wistar rats, which were monitored for clinical and behavioural change, and weight loss. Brains were removed after either 1 week or 4 weeks, and examined for evidence of inflammation and toxicity. RESULTS: Control catheters colonized quickly after the first challenge, while no colonization occurred in the impregnated catheters even after the 4 week challenge. Animals receiving the antimicrobial segments behaved normally and gained weight as expected. Neurohistochemistry revealed only surgical trauma and no evidence of neurotoxicity. CONCLUSIONS: The antimicrobial catheter appears to withstand bacterial challenge for at least 4 weeks, suggesting that it might offer protection against infection with MDR Gram-negative bacteria in patients undergoing EVD. It also appears to be safe for use in the CNS. |
format | Online Article Text |
id | pubmed-6753475 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-67534752019-09-25 An external ventricular drainage catheter impregnated with rifampicin, trimethoprim and triclosan, with extended activity against MDR Gram-negative bacteria: an in vitro and in vivo study Bayston, Roger Ashraf, Waheed Pelegrin, Ivan Fowkes, Katherine Bienemann, Alison S Singleton, William G B Scott, Ian S J Antimicrob Chemother Original Research BACKGROUND: External ventricular drainage (EVD) carries a high risk of ventriculitis, increasingly caused by MDR Gram-negative bacteria such as Escherichia coli and Acinetobacter baumannii. Existing antimicrobial EVD catheters are not effective against these, and we have developed a catheter with activity against MDR bacteria and demonstrated the safety of the new formulation for use in the brain. OBJECTIVES: Our aim was to determine the ability of a newly formulated impregnated EVD catheters to withstand challenge with MDR Gram-negative bacteria and to obtain information about its safety for use in the CNS. METHODS: Catheters impregnated with three antimicrobials (rifampicin, trimethoprim and triclosan) were challenged in flow conditions at four weekly timepoints with high doses of MDR bacteria, including MRSA and Acinetobacter, and monitored for bacterial colonization. Catheter segments were also inserted intracerebrally into Wistar rats, which were monitored for clinical and behavioural change, and weight loss. Brains were removed after either 1 week or 4 weeks, and examined for evidence of inflammation and toxicity. RESULTS: Control catheters colonized quickly after the first challenge, while no colonization occurred in the impregnated catheters even after the 4 week challenge. Animals receiving the antimicrobial segments behaved normally and gained weight as expected. Neurohistochemistry revealed only surgical trauma and no evidence of neurotoxicity. CONCLUSIONS: The antimicrobial catheter appears to withstand bacterial challenge for at least 4 weeks, suggesting that it might offer protection against infection with MDR Gram-negative bacteria in patients undergoing EVD. It also appears to be safe for use in the CNS. Oxford University Press 2019-10 2019-07-13 /pmc/articles/PMC6753475/ /pubmed/31302702 http://dx.doi.org/10.1093/jac/dkz293 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Bayston, Roger Ashraf, Waheed Pelegrin, Ivan Fowkes, Katherine Bienemann, Alison S Singleton, William G B Scott, Ian S An external ventricular drainage catheter impregnated with rifampicin, trimethoprim and triclosan, with extended activity against MDR Gram-negative bacteria: an in vitro and in vivo study |
title | An external ventricular drainage catheter impregnated with rifampicin, trimethoprim and triclosan, with extended activity against MDR Gram-negative bacteria: an in vitro and in vivo study |
title_full | An external ventricular drainage catheter impregnated with rifampicin, trimethoprim and triclosan, with extended activity against MDR Gram-negative bacteria: an in vitro and in vivo study |
title_fullStr | An external ventricular drainage catheter impregnated with rifampicin, trimethoprim and triclosan, with extended activity against MDR Gram-negative bacteria: an in vitro and in vivo study |
title_full_unstemmed | An external ventricular drainage catheter impregnated with rifampicin, trimethoprim and triclosan, with extended activity against MDR Gram-negative bacteria: an in vitro and in vivo study |
title_short | An external ventricular drainage catheter impregnated with rifampicin, trimethoprim and triclosan, with extended activity against MDR Gram-negative bacteria: an in vitro and in vivo study |
title_sort | external ventricular drainage catheter impregnated with rifampicin, trimethoprim and triclosan, with extended activity against mdr gram-negative bacteria: an in vitro and in vivo study |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753475/ https://www.ncbi.nlm.nih.gov/pubmed/31302702 http://dx.doi.org/10.1093/jac/dkz293 |
work_keys_str_mv | AT baystonroger anexternalventriculardrainagecatheterimpregnatedwithrifampicintrimethoprimandtriclosanwithextendedactivityagainstmdrgramnegativebacteriaaninvitroandinvivostudy AT ashrafwaheed anexternalventriculardrainagecatheterimpregnatedwithrifampicintrimethoprimandtriclosanwithextendedactivityagainstmdrgramnegativebacteriaaninvitroandinvivostudy AT pelegrinivan anexternalventriculardrainagecatheterimpregnatedwithrifampicintrimethoprimandtriclosanwithextendedactivityagainstmdrgramnegativebacteriaaninvitroandinvivostudy AT fowkeskatherine anexternalventriculardrainagecatheterimpregnatedwithrifampicintrimethoprimandtriclosanwithextendedactivityagainstmdrgramnegativebacteriaaninvitroandinvivostudy AT bienemannalisons anexternalventriculardrainagecatheterimpregnatedwithrifampicintrimethoprimandtriclosanwithextendedactivityagainstmdrgramnegativebacteriaaninvitroandinvivostudy AT singletonwilliamgb anexternalventriculardrainagecatheterimpregnatedwithrifampicintrimethoprimandtriclosanwithextendedactivityagainstmdrgramnegativebacteriaaninvitroandinvivostudy AT scottians anexternalventriculardrainagecatheterimpregnatedwithrifampicintrimethoprimandtriclosanwithextendedactivityagainstmdrgramnegativebacteriaaninvitroandinvivostudy AT baystonroger externalventriculardrainagecatheterimpregnatedwithrifampicintrimethoprimandtriclosanwithextendedactivityagainstmdrgramnegativebacteriaaninvitroandinvivostudy AT ashrafwaheed externalventriculardrainagecatheterimpregnatedwithrifampicintrimethoprimandtriclosanwithextendedactivityagainstmdrgramnegativebacteriaaninvitroandinvivostudy AT pelegrinivan externalventriculardrainagecatheterimpregnatedwithrifampicintrimethoprimandtriclosanwithextendedactivityagainstmdrgramnegativebacteriaaninvitroandinvivostudy AT fowkeskatherine externalventriculardrainagecatheterimpregnatedwithrifampicintrimethoprimandtriclosanwithextendedactivityagainstmdrgramnegativebacteriaaninvitroandinvivostudy AT bienemannalisons externalventriculardrainagecatheterimpregnatedwithrifampicintrimethoprimandtriclosanwithextendedactivityagainstmdrgramnegativebacteriaaninvitroandinvivostudy AT singletonwilliamgb externalventriculardrainagecatheterimpregnatedwithrifampicintrimethoprimandtriclosanwithextendedactivityagainstmdrgramnegativebacteriaaninvitroandinvivostudy AT scottians externalventriculardrainagecatheterimpregnatedwithrifampicintrimethoprimandtriclosanwithextendedactivityagainstmdrgramnegativebacteriaaninvitroandinvivostudy |