Cargando…
Predicting Dropouts From an Electronic Health Platform for Lifestyle Interventions: Analysis of Methods and Predictors
BACKGROUND: The increasing prevalence and economic impact of chronic diseases challenge health care systems globally. Digital solutions can potentially improve efficiency and quality of care, but these initiatives struggle with nonusage attrition. Machine learning methods have been proven to predict...
Autores principales: | Pedersen, Daniel Hansen, Mansourvar, Marjan, Sortsø, Camilla, Schmidt, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753691/ https://www.ncbi.nlm.nih.gov/pubmed/31486409 http://dx.doi.org/10.2196/13617 |
Ejemplares similares
-
Electronic Health Lifestyle Coaching Among Diabetes Patients in a Real-Life Municipality Setting: Observational Study
por: Komkova, Anastasija, et al.
Publicado: (2019) -
Multidisciplinary intervention in obese adolescents: predictors of dropout
por: Fidelix, Yara Lucy, et al.
Publicado: (2015) -
Lifestyle treatment in women with polycystic ovary syndrome: predictors of weight loss and dropout
por: Jiskoot, Geranne, et al.
Publicado: (2022) -
Identification of clinical factors related to prediction of alcohol use disorder from electronic health records using feature selection methods
por: Ebrahimi, Ali, et al.
Publicado: (2022) -
Quantifying the impact of addressing data challenges in prediction of length of stay
por: Naemi, Amin, et al.
Publicado: (2021)