Cargando…

Two-Dimensional Analysis of Smooth Pursuit Eye Movements Reveals Quantitative Deficits in Precision and Accuracy

PURPOSE: Small moving targets are followed by pursuit eye movements, with success ubiquitously defined by gain. Gain quantifies accuracy, rather than precision, and only for eye movements along the target trajectory. Analogous to previous studies of fixation, we analyzed pursuit performance in two d...

Descripción completa

Detalles Bibliográficos
Autores principales: Mcilreavy, Lee, Freeman, Tom C. A., Erichsen, Jonathan T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753966/
https://www.ncbi.nlm.nih.gov/pubmed/31588372
http://dx.doi.org/10.1167/tvst.8.5.7
_version_ 1783452994760605696
author Mcilreavy, Lee
Freeman, Tom C. A.
Erichsen, Jonathan T.
author_facet Mcilreavy, Lee
Freeman, Tom C. A.
Erichsen, Jonathan T.
author_sort Mcilreavy, Lee
collection PubMed
description PURPOSE: Small moving targets are followed by pursuit eye movements, with success ubiquitously defined by gain. Gain quantifies accuracy, rather than precision, and only for eye movements along the target trajectory. Analogous to previous studies of fixation, we analyzed pursuit performance in two dimensions as a function of target direction, velocity, and amplitude. As a subsidiary experiment, we compared pursuit performance against that of fixation. METHODS: Eye position was recorded from 15 observers during pursuit. The target was a 0.4° dot that moved across a large screen at 8°/s or 16°/s, either horizontally or vertically, through peak-to-peak amplitudes of 8°, 16°, or 32°. Two-dimensional eye velocity was expressed relative to the target, and a bivariate probability density function computed to obtain accuracy and precision. As a comparison, identical metrics were derived from fixation data. RESULTS: For all target directions, eye velocity was less precise along the target trajectory. Eye velocities orthogonal to the target trajectory were more accurate during vertical pursuit than horizontal. Pursuit accuracy and precision along and orthogonal to the target trajectory decreased at the higher target velocity. Accuracy along the target trajectory decreased with smaller target amplitudes. CONCLUSIONS: Orthogonal to the target trajectory, pursuit was inaccurate and imprecise. Compared to fixation, pursuit was less precise and less accurate even when following the stimulus that gave the best performance. TRANSLATIONAL RELEVANCE: This analytical approach may help the detection of subtle deficits in slow phase eye movements that could be used as biomarkers for disease progression and/or treatment.
format Online
Article
Text
id pubmed-6753966
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-67539662019-10-06 Two-Dimensional Analysis of Smooth Pursuit Eye Movements Reveals Quantitative Deficits in Precision and Accuracy Mcilreavy, Lee Freeman, Tom C. A. Erichsen, Jonathan T. Transl Vis Sci Technol Articles PURPOSE: Small moving targets are followed by pursuit eye movements, with success ubiquitously defined by gain. Gain quantifies accuracy, rather than precision, and only for eye movements along the target trajectory. Analogous to previous studies of fixation, we analyzed pursuit performance in two dimensions as a function of target direction, velocity, and amplitude. As a subsidiary experiment, we compared pursuit performance against that of fixation. METHODS: Eye position was recorded from 15 observers during pursuit. The target was a 0.4° dot that moved across a large screen at 8°/s or 16°/s, either horizontally or vertically, through peak-to-peak amplitudes of 8°, 16°, or 32°. Two-dimensional eye velocity was expressed relative to the target, and a bivariate probability density function computed to obtain accuracy and precision. As a comparison, identical metrics were derived from fixation data. RESULTS: For all target directions, eye velocity was less precise along the target trajectory. Eye velocities orthogonal to the target trajectory were more accurate during vertical pursuit than horizontal. Pursuit accuracy and precision along and orthogonal to the target trajectory decreased at the higher target velocity. Accuracy along the target trajectory decreased with smaller target amplitudes. CONCLUSIONS: Orthogonal to the target trajectory, pursuit was inaccurate and imprecise. Compared to fixation, pursuit was less precise and less accurate even when following the stimulus that gave the best performance. TRANSLATIONAL RELEVANCE: This analytical approach may help the detection of subtle deficits in slow phase eye movements that could be used as biomarkers for disease progression and/or treatment. The Association for Research in Vision and Ophthalmology 2019-09-11 /pmc/articles/PMC6753966/ /pubmed/31588372 http://dx.doi.org/10.1167/tvst.8.5.7 Text en Copyright 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License.
spellingShingle Articles
Mcilreavy, Lee
Freeman, Tom C. A.
Erichsen, Jonathan T.
Two-Dimensional Analysis of Smooth Pursuit Eye Movements Reveals Quantitative Deficits in Precision and Accuracy
title Two-Dimensional Analysis of Smooth Pursuit Eye Movements Reveals Quantitative Deficits in Precision and Accuracy
title_full Two-Dimensional Analysis of Smooth Pursuit Eye Movements Reveals Quantitative Deficits in Precision and Accuracy
title_fullStr Two-Dimensional Analysis of Smooth Pursuit Eye Movements Reveals Quantitative Deficits in Precision and Accuracy
title_full_unstemmed Two-Dimensional Analysis of Smooth Pursuit Eye Movements Reveals Quantitative Deficits in Precision and Accuracy
title_short Two-Dimensional Analysis of Smooth Pursuit Eye Movements Reveals Quantitative Deficits in Precision and Accuracy
title_sort two-dimensional analysis of smooth pursuit eye movements reveals quantitative deficits in precision and accuracy
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753966/
https://www.ncbi.nlm.nih.gov/pubmed/31588372
http://dx.doi.org/10.1167/tvst.8.5.7
work_keys_str_mv AT mcilreavylee twodimensionalanalysisofsmoothpursuiteyemovementsrevealsquantitativedeficitsinprecisionandaccuracy
AT freemantomca twodimensionalanalysisofsmoothpursuiteyemovementsrevealsquantitativedeficitsinprecisionandaccuracy
AT erichsenjonathant twodimensionalanalysisofsmoothpursuiteyemovementsrevealsquantitativedeficitsinprecisionandaccuracy