Cargando…

Determination of birth-weight centile thresholds associated with adverse perinatal outcomes using population, customised, and Intergrowth charts: A Swedish population-based cohort study

BACKGROUND: Although many studies have compared birth-weight charts to determine which better identify infants at risk of adverse perinatal outcomes, less attention has been given to the threshold used to define small or large for gestational age (SGA or LGA) infants. Our aim was to explore differen...

Descripción completa

Detalles Bibliográficos
Autores principales: Vieira, Matias C., Relph, Sophie, Persson, Martina, Seed, Paul T., Pasupathy, Dharmintra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754137/
https://www.ncbi.nlm.nih.gov/pubmed/31539391
http://dx.doi.org/10.1371/journal.pmed.1002902
_version_ 1783453028030873600
author Vieira, Matias C.
Relph, Sophie
Persson, Martina
Seed, Paul T.
Pasupathy, Dharmintra
author_facet Vieira, Matias C.
Relph, Sophie
Persson, Martina
Seed, Paul T.
Pasupathy, Dharmintra
author_sort Vieira, Matias C.
collection PubMed
description BACKGROUND: Although many studies have compared birth-weight charts to determine which better identify infants at risk of adverse perinatal outcomes, less attention has been given to the threshold used to define small or large for gestational age (SGA or LGA) infants. Our aim was to explore different thresholds associated with increased risk of adverse perinatal outcomes using population, customised, and Intergrowth centile charts. METHODS AND FINDINGS: This is a population-based cohort study (Swedish Medical Birth Registry), which included term singleton births between 2006 and 2015 from women with available data on first-trimester screening. Population, customised, and Intergrowth charts were studied. Outcomes included cesarean section, postpartum haemorrhage, severe perineal tear, Apgar score at 5 minutes, neonatal morbidity, and perinatal mortality. Odds for each outcome were assessed in intervals of 5 centiles of birth weight (reference being 40th–60th centiles) using logistic regression. Intervals of 5% of the population were also explored. Sensitivity for fixed false-positive rates (FPRs) was reported for neonatal outcomes. Data from 212,101 births were analysed. Mean age was 33 ± 5 years, 48% of women were nulliparous, and 80% were born in Sweden. Prevalence of SGA (<10th centile) was 10.1%, 10.0%, and 3.1%, and prevalence of LGA (>90th centile) was 10.0%, 8.2%, and 25.1%, assessed using population, customised, and Intergrowth charts, respectively. In small infants, the risk of perinatal mortality was consistently increased below the 15th, 10th, and 35th birth-weight centiles for the respective charts (odds ratio [OR] 1.59, 95% confidence interval [CI] 1.05–2.39, p = 0.03 for 10th–15th population centile; OR 2.54, 95% CI 1.74–3.71, p < 0.001 for 5th–10th customised centile; OR 1.81, 95% CI 1.07–3.04, p = 0.03 for 30th–35th Intergrowth centile). The strength of association with adverse perinatal outcomes was different between infants below the 5th birth-weight centile for each chart (OR 4.47, 95% CI 3.30–6.04, p < 0.001 for the population chart; OR 5.78, 95% CI 4.22–7.91, p < 0.001 for the customised chart; OR 10.74, 95% CI 7.32–15.77, p < 0.001 for the Intergrowth chart) but similar in the smallest 5% of the population (OR 4.34, 95% CI 3.22–5.86, p < 0.001 for the population chart; OR 5.23, 95% CI 3.85–7.11, p < 0.001 for the customised chart; OR 4.69, 95% CI 3.47–6.34, p < 0.001 for the Intergrowth chart). For a fixed FPR of 10%, different thresholds for each chart achieved similar sensitivity for perinatal mortality in small infants (29% for all charts). Similar behaviour of different thresholds and similar risk/sensitivity for fixed FPR were observed in relation to other outcomes and for LGA infants. Limitations of this study include the relative homogeneity of the Swedish population, which limits generalisability to other populations; customised centiles may perform differently in populations with increased heterogeneity of ethnic background. CONCLUSIONS: The risk of adverse outcomes was consistent across proportions of the population but did not reflect fixed thresholds, such as the 10th or 90th centiles, across different growth charts. Chart-specific thresholds for the population should be considered in clinical practice.
format Online
Article
Text
id pubmed-6754137
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-67541372019-09-27 Determination of birth-weight centile thresholds associated with adverse perinatal outcomes using population, customised, and Intergrowth charts: A Swedish population-based cohort study Vieira, Matias C. Relph, Sophie Persson, Martina Seed, Paul T. Pasupathy, Dharmintra PLoS Med Research Article BACKGROUND: Although many studies have compared birth-weight charts to determine which better identify infants at risk of adverse perinatal outcomes, less attention has been given to the threshold used to define small or large for gestational age (SGA or LGA) infants. Our aim was to explore different thresholds associated with increased risk of adverse perinatal outcomes using population, customised, and Intergrowth centile charts. METHODS AND FINDINGS: This is a population-based cohort study (Swedish Medical Birth Registry), which included term singleton births between 2006 and 2015 from women with available data on first-trimester screening. Population, customised, and Intergrowth charts were studied. Outcomes included cesarean section, postpartum haemorrhage, severe perineal tear, Apgar score at 5 minutes, neonatal morbidity, and perinatal mortality. Odds for each outcome were assessed in intervals of 5 centiles of birth weight (reference being 40th–60th centiles) using logistic regression. Intervals of 5% of the population were also explored. Sensitivity for fixed false-positive rates (FPRs) was reported for neonatal outcomes. Data from 212,101 births were analysed. Mean age was 33 ± 5 years, 48% of women were nulliparous, and 80% were born in Sweden. Prevalence of SGA (<10th centile) was 10.1%, 10.0%, and 3.1%, and prevalence of LGA (>90th centile) was 10.0%, 8.2%, and 25.1%, assessed using population, customised, and Intergrowth charts, respectively. In small infants, the risk of perinatal mortality was consistently increased below the 15th, 10th, and 35th birth-weight centiles for the respective charts (odds ratio [OR] 1.59, 95% confidence interval [CI] 1.05–2.39, p = 0.03 for 10th–15th population centile; OR 2.54, 95% CI 1.74–3.71, p < 0.001 for 5th–10th customised centile; OR 1.81, 95% CI 1.07–3.04, p = 0.03 for 30th–35th Intergrowth centile). The strength of association with adverse perinatal outcomes was different between infants below the 5th birth-weight centile for each chart (OR 4.47, 95% CI 3.30–6.04, p < 0.001 for the population chart; OR 5.78, 95% CI 4.22–7.91, p < 0.001 for the customised chart; OR 10.74, 95% CI 7.32–15.77, p < 0.001 for the Intergrowth chart) but similar in the smallest 5% of the population (OR 4.34, 95% CI 3.22–5.86, p < 0.001 for the population chart; OR 5.23, 95% CI 3.85–7.11, p < 0.001 for the customised chart; OR 4.69, 95% CI 3.47–6.34, p < 0.001 for the Intergrowth chart). For a fixed FPR of 10%, different thresholds for each chart achieved similar sensitivity for perinatal mortality in small infants (29% for all charts). Similar behaviour of different thresholds and similar risk/sensitivity for fixed FPR were observed in relation to other outcomes and for LGA infants. Limitations of this study include the relative homogeneity of the Swedish population, which limits generalisability to other populations; customised centiles may perform differently in populations with increased heterogeneity of ethnic background. CONCLUSIONS: The risk of adverse outcomes was consistent across proportions of the population but did not reflect fixed thresholds, such as the 10th or 90th centiles, across different growth charts. Chart-specific thresholds for the population should be considered in clinical practice. Public Library of Science 2019-09-20 /pmc/articles/PMC6754137/ /pubmed/31539391 http://dx.doi.org/10.1371/journal.pmed.1002902 Text en © 2019 Vieira et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Vieira, Matias C.
Relph, Sophie
Persson, Martina
Seed, Paul T.
Pasupathy, Dharmintra
Determination of birth-weight centile thresholds associated with adverse perinatal outcomes using population, customised, and Intergrowth charts: A Swedish population-based cohort study
title Determination of birth-weight centile thresholds associated with adverse perinatal outcomes using population, customised, and Intergrowth charts: A Swedish population-based cohort study
title_full Determination of birth-weight centile thresholds associated with adverse perinatal outcomes using population, customised, and Intergrowth charts: A Swedish population-based cohort study
title_fullStr Determination of birth-weight centile thresholds associated with adverse perinatal outcomes using population, customised, and Intergrowth charts: A Swedish population-based cohort study
title_full_unstemmed Determination of birth-weight centile thresholds associated with adverse perinatal outcomes using population, customised, and Intergrowth charts: A Swedish population-based cohort study
title_short Determination of birth-weight centile thresholds associated with adverse perinatal outcomes using population, customised, and Intergrowth charts: A Swedish population-based cohort study
title_sort determination of birth-weight centile thresholds associated with adverse perinatal outcomes using population, customised, and intergrowth charts: a swedish population-based cohort study
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754137/
https://www.ncbi.nlm.nih.gov/pubmed/31539391
http://dx.doi.org/10.1371/journal.pmed.1002902
work_keys_str_mv AT vieiramatiasc determinationofbirthweightcentilethresholdsassociatedwithadverseperinataloutcomesusingpopulationcustomisedandintergrowthchartsaswedishpopulationbasedcohortstudy
AT relphsophie determinationofbirthweightcentilethresholdsassociatedwithadverseperinataloutcomesusingpopulationcustomisedandintergrowthchartsaswedishpopulationbasedcohortstudy
AT perssonmartina determinationofbirthweightcentilethresholdsassociatedwithadverseperinataloutcomesusingpopulationcustomisedandintergrowthchartsaswedishpopulationbasedcohortstudy
AT seedpault determinationofbirthweightcentilethresholdsassociatedwithadverseperinataloutcomesusingpopulationcustomisedandintergrowthchartsaswedishpopulationbasedcohortstudy
AT pasupathydharmintra determinationofbirthweightcentilethresholdsassociatedwithadverseperinataloutcomesusingpopulationcustomisedandintergrowthchartsaswedishpopulationbasedcohortstudy