Cargando…
Machine learning for comprehensive forecasting of Alzheimer’s Disease progression
Most approaches to machine learning from electronic health data can only predict a single endpoint. The ability to simultaneously simulate dozens of patient characteristics is a crucial step towards personalized medicine for Alzheimer’s Disease. Here, we use an unsupervised machine learning model ca...
Autores principales: | Fisher, Charles K., Smith, Aaron M., Walsh, Jonathan R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754403/ https://www.ncbi.nlm.nih.gov/pubmed/31541187 http://dx.doi.org/10.1038/s41598-019-49656-2 |
Ejemplares similares
-
Forecasting individual progression trajectories in Alzheimer’s disease
por: Maheux, Etienne, et al.
Publicado: (2023) -
Product progression: a machine learning approach to forecasting industrial upgrading
por: Albora, Giambattista, et al.
Publicado: (2023) -
Forecasting Hospital Readmissions with Machine Learning
por: Michailidis, Panagiotis, et al.
Publicado: (2022) -
Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning
por: Franzmeier, Nicolai, et al.
Publicado: (2020) -
Machine learning prediction of mild cognitive impairment and its progression to Alzheimer's disease
por: Fouladvand, Sajjad, et al.
Publicado: (2023)