Cargando…
Drug-Drug Interaction Predicting by Neural Network Using Integrated Similarity
Drug-Drug Interaction (DDI) prediction is one of the most critical issues in drug development and health. Proposing appropriate computational methods for predicting unknown DDI with high precision is challenging. We proposed "NDD: Neural network-based method for drug-drug interaction prediction...
Autores principales: | Rohani, Narjes, Eslahchi, Changiz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754439/ https://www.ncbi.nlm.nih.gov/pubmed/31541145 http://dx.doi.org/10.1038/s41598-019-50121-3 |
Ejemplares similares
-
Classifying Breast Cancer Molecular Subtypes by Using Deep Clustering Approach
por: Rohani, Narjes, et al.
Publicado: (2020) -
DisCoVering potential candidates of RNAi-based therapy for COVID-19 using computational methods
por: Rohani, Narjes, et al.
Publicado: (2021) -
ADRML: anticancer drug response prediction using manifold learning
por: Ahmadi Moughari, Fatemeh, et al.
Publicado: (2020) -
Author Correction: ADRML: anticancer drug response prediction using manifold learning
por: Moughari, Fatemeh Ahmadi, et al.
Publicado: (2020) -
A neural network-based method for polypharmacy side effects prediction
por: Masumshah, Raziyeh, et al.
Publicado: (2021)