Cargando…
Identification and Validation of Core Genes Involved in the Development of Papillary Thyroid Carcinoma via Bioinformatics Analysis
BACKGROUND: Papillary thyroid carcinoma (PTC) is a common endocrine malignant neoplasm, and its incidence increases continuously worldwide in the recent years. However, efficient clinical biomarkers were still deficient; the present research is aimed at exploring significant core genes of PTC. METHO...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754886/ https://www.ncbi.nlm.nih.gov/pubmed/31583243 http://dx.doi.org/10.1155/2019/5894926 |
Sumario: | BACKGROUND: Papillary thyroid carcinoma (PTC) is a common endocrine malignant neoplasm, and its incidence increases continuously worldwide in the recent years. However, efficient clinical biomarkers were still deficient; the present research is aimed at exploring significant core genes of PTC. METHODS: We integrated three cohorts to identify hub genes and pathways associated with PTC by comprehensive bioinformatics analysis. Expression profiles GSE33630, GSE35570, and GSE60542, including 114 PTC tissues and 126 normal tissues, were enrolled in this research. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were utilized to search for the crucial biological behaviors and pathways involved in PTC carcinogenesis. Protein-protein interaction (PPI) network was constructed, and significant modules were deeply studied. RESULTS: A total of 831 differentially expressed genes (DEGs) were discovered, comprising 410 upregulated and 421 downregulated genes in PTC tissues compared to normal thyroid tissues. PPI network analysis demonstrated the interactions between those DEGs, and top 10 pivotal genes (TGFB1, CXCL8, LRRK2, CD44, CCND1, JUN, DCN, BCL2, ACACB, and CXCL12) with highest degree of connectivity were extracted from the network and verified by TCGA dataset and RT-PCR experiment of PTC samples. Four of the hub genes (CXCL8, DCN, BCL2, and ACACB) were linked to the prognosis of PTC patients and considered as clinically relevant core genes via survival analysis. CONCLUSION: In conclusion, we propose a series of key genes associated with PTC development and these genes could serve as the diagnostic biomarkers or therapeutic targets in the future treatment for PTC. |
---|