Cargando…

circRNA CDR1as Regulated the Proliferation of Human Periodontal Ligament Stem Cells under a Lipopolysaccharide-Induced Inflammatory Condition

circRNA CDR1as (CDR1as) has been demonstrated to play important roles in a variety of inflammation-related diseases by acting as miRNA sponges. The present study is aimed at investigating the potential roles of CDR1as in the proliferation of human periodontal ligament stem cells (PDLSCs) under an in...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Fang, Chen, Xi, Han, Ying, Xi, Shuang, Wu, Guofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754938/
https://www.ncbi.nlm.nih.gov/pubmed/31582895
http://dx.doi.org/10.1155/2019/1625381
Descripción
Sumario:circRNA CDR1as (CDR1as) has been demonstrated to play important roles in a variety of inflammation-related diseases by acting as miRNA sponges. The present study is aimed at investigating the potential roles of CDR1as in the proliferation of human periodontal ligament stem cells (PDLSCs) under an inflammatory condition induced by Porphyromonas gingivalis-derived lipopolysaccharide (LPS). Human periodontal ligament cells (PDLCs) were isolated from periodontal ligament tissue, and PDLSCs were sorted from PDLCs based on the STRO-1 expression through fluorescence-activated cell sorting. We further found that CDR1as was significantly downregulated in LPS-treated PDLSCs compared to untreated cells, as well as in normal periodontal ligament tissues compared to periodontitis tissues. Knockdown of CDR1as promoted LPS-induced proliferative inhibition of PDLSCs, whereas overexpression of CDR1as alleviated the LPS-induced proliferative ability of PDLSCs. Mechanistically, CDR1as functioned as an miR-7 sponge to activate the ERK signal pathway to mediate the inhibition effect of LPS on cell proliferation. Taken together, our findings revealed the effects of the interacting pair of CDR1as/miR-7 on the proliferation ability of PDLSCs within their surrounding inflammatory microenvironment of periodontitis.