Cargando…

A 212-nt long RNA structure in the Tobacco necrosis virus-D RNA genome is resistant to Xrn degradation

Plus-strand RNA viruses can accumulate viral RNA degradation products during infections. Some of these decay intermediates are generated by the cytosolic 5′-to-3′ exoribonuclease Xrn1 (mammals and yeast) or Xrn4 (plants) and are formed when the enzyme stalls on substrate RNAs upon encountering inhib...

Descripción completa

Detalles Bibliográficos
Autores principales: Gunawardene, Chaminda D, Newburn, Laura R, White, K Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755097/
https://www.ncbi.nlm.nih.gov/pubmed/31392982
http://dx.doi.org/10.1093/nar/gkz668
Descripción
Sumario:Plus-strand RNA viruses can accumulate viral RNA degradation products during infections. Some of these decay intermediates are generated by the cytosolic 5′-to-3′ exoribonuclease Xrn1 (mammals and yeast) or Xrn4 (plants) and are formed when the enzyme stalls on substrate RNAs upon encountering inhibitory RNA structures. Many Xrn-generated RNAs correspond to 3′-terminal segments within the 3′-UTR of viral genomes and perform important functions during infections. Here we have investigated a 3′-terminal small viral RNA (svRNA) generated by Xrn during infections with Tobacco necrosis virus-D (family Tombusviridae). Our results indicate that (i) unlike known stalling RNA structures that are compact and modular, the TNV-D structure encompasses the entire 212 nt of the svRNA and is not functionally transposable, (ii) at least two tertiary interactions within the RNA structure are required for effective Xrn blocking and (iii) most of the svRNA generated in infections is derived from viral polymerase-generated subgenomic mRNA1. In vitro and in vivo analyses allowed for inferences on roles for the svRNA. Our findings provide a new and distinct addition to the growing list of Xrn-resistant viral RNAs and stalling structures found associated with different plant and animal RNA viruses.