Cargando…

Ginsenoside Rb1 prevents steroid-induced avascular necrosis of the femoral head through the bone morphogenetic protein-2 and vascular endothelial growth factor pathway

At present, the molecular mechanism underlying the protective effect of Ginsenoside Rb1 remains unclear. The present study was designed to investigate whether Ginsenoside Rb1 weakened the steroid-induced avascular necrosis of the femoral head (SANFH) and to explore the possible mechanisms of the abo...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Junwu, Wei, Daiqin, Peng, Lin, Chang, Tianmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755182/
https://www.ncbi.nlm.nih.gov/pubmed/31432121
http://dx.doi.org/10.3892/mmr.2019.10553
Descripción
Sumario:At present, the molecular mechanism underlying the protective effect of Ginsenoside Rb1 remains unclear. The present study was designed to investigate whether Ginsenoside Rb1 weakened the steroid-induced avascular necrosis of the femoral head (SANFH) and to explore the possible mechanisms of the above effects. As a result, it was revealed that Ginsenoside Rb1 was protective against steroid-induced avascular necrosis and inhibited serum osteocalcin in a rat model of SANFH. Ginsenoside Rb1 reduced inflammation, oxidative stress and bone cell apoptosis in a rat model of SANFH. Furthermore, Ginsenoside Rb1 attenuated trabecula parameters, total cholesterol and low density lipoprotein/high density lipoprotein in SANFH rat. Additionally, Ginsenoside Rb1 significantly reversed alkaline phosphatase and osteocalcin activities, vascular endothelial growth factor (VEGF) receptor, VEGF, Runt related transcription factor 2 (Runx2) and bone morphogenetic protein (BMP)-2 protein expression in SANFH rat. Collectively, the present study demonstrated that Ginsenoside Rb1 attenuated SANFH through the VEGF/RUNX2/BMP-2 signaling pathway.