Cargando…

Enhanced antibacterial activity of capped zinc oxide nanoparticles: A step towards the control of clinical bovine mastitis

BACKGROUND AND AIM: Bovine mastitis is the costliest prevalent disease in the dairy sector due to the limitations of conventional treatments. Zinc oxide nanoparticles (ZnO-NPs) have been regarded as safe and economical antibacterial candidates against several microorganisms, but the tendency of thes...

Descripción completa

Detalles Bibliográficos
Autores principales: Hozyen, H. F., Ibrahim, E. S., Khairy, E. A., El-Dek, S. I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Veterinary World 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755405/
https://www.ncbi.nlm.nih.gov/pubmed/31641301
http://dx.doi.org/10.14202/vetworld.2019.1225-1232
Descripción
Sumario:BACKGROUND AND AIM: Bovine mastitis is the costliest prevalent disease in the dairy sector due to the limitations of conventional treatments. Zinc oxide nanoparticles (ZnO-NPs) have been regarded as safe and economical antibacterial candidates against several microorganisms, but the tendency of these particles to aggregate is a major barrier to their application. This study aimed to enhance the antibacterial efficiency of ZnO-NPs against some bacterial agents, causing bovine mastitis. MATERIALS AND METHODS: A total of 24 milk samples out of 300 cases from Nubaria farm, Beheira Governorate, Egypt, were collected from cows with clinical mastitis. ZnO-NPs were fabricated by a sonochemical method using starch as a capping agent and by an auto-combustion reaction using glycine as a fuel. The two preparations of synthesized ZnO-NPs at different concentrations were assessed for their antimicrobial activities in vitro against Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae isolated from milk of affected cows. RESULTS: Sonochemically synthesized capped ZnO-NPs were dispersed and non-agglomerated in comparison with aggregated uncapped ZnO-NPs prepared by an auto-combustion reaction. Capped dispersed ZnO-NPs showed higher antibacterial activity against S. aureus, E. coli, and K. pneumoniae than particles synthesized by the auto-combustion reaction at same concentrations. However, the zone of inhibition for dispersed and agglomerated ZnO-NPs was concentration-dependent. In addition, Gram-positive S. aureus exhibited higher resistance to ZnO-NPs synthesized by both methods than Gram-negative E. coli and K. pneumoniae. CONCLUSION: Dispersed, non-agglomerated ZnO-NPs fabricated using starch as a capping agent under sonochemical irradiation could potentially be regarded as highly effective and inexpensive antimicrobial agents against S. aureus, E. coli, and K. pneumoniae for the management of bovine mastitis.