Cargando…

Thermally Stable Donor–Acceptor Type (Alkynyl)Gold(III) TADF Emitters Achieved EQEs and Luminance of up to 23.4% and 70 300 cd m(−2) in Vacuum‐Deposited OLEDs

Thermally stable, strongly luminescent gold‐TADF emitters are the clue to realize practical applications of gold metal in next generation display and lighting technology, a scarce example of which is herein described. A series of donor–acceptor type cyclometalated gold(III) alkynyl complexes with so...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Dongling, To, Wai‐Pong, Kwak, Yoonhyun, Cho, Yongsuk, Cheng, Gang, Tong, Glenna So Ming, Che, Chi‐Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755518/
https://www.ncbi.nlm.nih.gov/pubmed/31559124
http://dx.doi.org/10.1002/advs.201802297
Descripción
Sumario:Thermally stable, strongly luminescent gold‐TADF emitters are the clue to realize practical applications of gold metal in next generation display and lighting technology, a scarce example of which is herein described. A series of donor–acceptor type cyclometalated gold(III) alkynyl complexes with some of them displaying highly efficient thermally activated delayed fluorescence (TADF) with Φ up to 88% in thin films and emission lifetimes of ≈1–2 µs at room temperature are developed. The emission color of these complexes is readily tunable from green to red by varying the donor unit and cyclometalating ligand. Vacuum‐deposited organic light‐emitting diodes (OLEDs) with these complexes as emissive dopants achieve external quantum efficiencies (EQEs) and luminance of up to 23.4% and 70 300 cd m(−2), respectively.