Cargando…

Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics

This study introduces a high‐throughput, large‐scale manufacturing method that uses aerosol jet 3D printing for a fully printed stretchable, wireless electronics. A comprehensive study of nanoink preparation and parameter optimization enables a low‐profile, multilayer printing of a high‐performance,...

Descripción completa

Detalles Bibliográficos
Autores principales: Herbert, Robert, Mishra, Saswat, Lim, Hyo‐Ryoung, Yoo, Hyoungsuk, Yeo, Woon‐Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755526/
https://www.ncbi.nlm.nih.gov/pubmed/31559136
http://dx.doi.org/10.1002/advs.201901034
_version_ 1783453250143387648
author Herbert, Robert
Mishra, Saswat
Lim, Hyo‐Ryoung
Yoo, Hyoungsuk
Yeo, Woon‐Hong
author_facet Herbert, Robert
Mishra, Saswat
Lim, Hyo‐Ryoung
Yoo, Hyoungsuk
Yeo, Woon‐Hong
author_sort Herbert, Robert
collection PubMed
description This study introduces a high‐throughput, large‐scale manufacturing method that uses aerosol jet 3D printing for a fully printed stretchable, wireless electronics. A comprehensive study of nanoink preparation and parameter optimization enables a low‐profile, multilayer printing of a high‐performance, capacitance flow sensor. The core printing process involves direct, microstructured patterning of biocompatible silver nanoparticles and polyimide. The optimized fabrication approach allows for transfer of highly conductive, patterned silver nanoparticle films to a soft elastomeric substrate. Stretchable mechanics modeling and seamless integration with an implantable stent display a highly stretchable and flexible sensor, deployable by a catheter for extremely low‐profile, conformal insertion in a blood vessel. Optimization of a transient, wireless inductive coupling method allows for wireless detection of biomimetic cerebral aneurysm hemodynamics with the maximum readout distance of 6 cm through meat. In vitro demonstrations include wireless monitoring of flow rates (0.05–1 m s(−1)) in highly contoured and narrow human neurovascular models. Collectively, this work shows the potential of the printed biosystem to offer a high throughput, additive manufacturing of stretchable electronics with advances toward batteryless, real‐time wireless monitoring of cerebral aneurysm hemodynamics.
format Online
Article
Text
id pubmed-6755526
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-67555262019-09-26 Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics Herbert, Robert Mishra, Saswat Lim, Hyo‐Ryoung Yoo, Hyoungsuk Yeo, Woon‐Hong Adv Sci (Weinh) Full Papers This study introduces a high‐throughput, large‐scale manufacturing method that uses aerosol jet 3D printing for a fully printed stretchable, wireless electronics. A comprehensive study of nanoink preparation and parameter optimization enables a low‐profile, multilayer printing of a high‐performance, capacitance flow sensor. The core printing process involves direct, microstructured patterning of biocompatible silver nanoparticles and polyimide. The optimized fabrication approach allows for transfer of highly conductive, patterned silver nanoparticle films to a soft elastomeric substrate. Stretchable mechanics modeling and seamless integration with an implantable stent display a highly stretchable and flexible sensor, deployable by a catheter for extremely low‐profile, conformal insertion in a blood vessel. Optimization of a transient, wireless inductive coupling method allows for wireless detection of biomimetic cerebral aneurysm hemodynamics with the maximum readout distance of 6 cm through meat. In vitro demonstrations include wireless monitoring of flow rates (0.05–1 m s(−1)) in highly contoured and narrow human neurovascular models. Collectively, this work shows the potential of the printed biosystem to offer a high throughput, additive manufacturing of stretchable electronics with advances toward batteryless, real‐time wireless monitoring of cerebral aneurysm hemodynamics. John Wiley and Sons Inc. 2019-08-07 /pmc/articles/PMC6755526/ /pubmed/31559136 http://dx.doi.org/10.1002/advs.201901034 Text en © 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Herbert, Robert
Mishra, Saswat
Lim, Hyo‐Ryoung
Yoo, Hyoungsuk
Yeo, Woon‐Hong
Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics
title Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics
title_full Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics
title_fullStr Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics
title_full_unstemmed Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics
title_short Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics
title_sort fully printed, wireless, stretchable implantable biosystem toward batteryless, real‐time monitoring of cerebral aneurysm hemodynamics
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755526/
https://www.ncbi.nlm.nih.gov/pubmed/31559136
http://dx.doi.org/10.1002/advs.201901034
work_keys_str_mv AT herbertrobert fullyprintedwirelessstretchableimplantablebiosystemtowardbatterylessrealtimemonitoringofcerebralaneurysmhemodynamics
AT mishrasaswat fullyprintedwirelessstretchableimplantablebiosystemtowardbatterylessrealtimemonitoringofcerebralaneurysmhemodynamics
AT limhyoryoung fullyprintedwirelessstretchableimplantablebiosystemtowardbatterylessrealtimemonitoringofcerebralaneurysmhemodynamics
AT yoohyoungsuk fullyprintedwirelessstretchableimplantablebiosystemtowardbatterylessrealtimemonitoringofcerebralaneurysmhemodynamics
AT yeowoonhong fullyprintedwirelessstretchableimplantablebiosystemtowardbatterylessrealtimemonitoringofcerebralaneurysmhemodynamics