Cargando…
Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics
This study introduces a high‐throughput, large‐scale manufacturing method that uses aerosol jet 3D printing for a fully printed stretchable, wireless electronics. A comprehensive study of nanoink preparation and parameter optimization enables a low‐profile, multilayer printing of a high‐performance,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755526/ https://www.ncbi.nlm.nih.gov/pubmed/31559136 http://dx.doi.org/10.1002/advs.201901034 |
_version_ | 1783453250143387648 |
---|---|
author | Herbert, Robert Mishra, Saswat Lim, Hyo‐Ryoung Yoo, Hyoungsuk Yeo, Woon‐Hong |
author_facet | Herbert, Robert Mishra, Saswat Lim, Hyo‐Ryoung Yoo, Hyoungsuk Yeo, Woon‐Hong |
author_sort | Herbert, Robert |
collection | PubMed |
description | This study introduces a high‐throughput, large‐scale manufacturing method that uses aerosol jet 3D printing for a fully printed stretchable, wireless electronics. A comprehensive study of nanoink preparation and parameter optimization enables a low‐profile, multilayer printing of a high‐performance, capacitance flow sensor. The core printing process involves direct, microstructured patterning of biocompatible silver nanoparticles and polyimide. The optimized fabrication approach allows for transfer of highly conductive, patterned silver nanoparticle films to a soft elastomeric substrate. Stretchable mechanics modeling and seamless integration with an implantable stent display a highly stretchable and flexible sensor, deployable by a catheter for extremely low‐profile, conformal insertion in a blood vessel. Optimization of a transient, wireless inductive coupling method allows for wireless detection of biomimetic cerebral aneurysm hemodynamics with the maximum readout distance of 6 cm through meat. In vitro demonstrations include wireless monitoring of flow rates (0.05–1 m s(−1)) in highly contoured and narrow human neurovascular models. Collectively, this work shows the potential of the printed biosystem to offer a high throughput, additive manufacturing of stretchable electronics with advances toward batteryless, real‐time wireless monitoring of cerebral aneurysm hemodynamics. |
format | Online Article Text |
id | pubmed-6755526 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67555262019-09-26 Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics Herbert, Robert Mishra, Saswat Lim, Hyo‐Ryoung Yoo, Hyoungsuk Yeo, Woon‐Hong Adv Sci (Weinh) Full Papers This study introduces a high‐throughput, large‐scale manufacturing method that uses aerosol jet 3D printing for a fully printed stretchable, wireless electronics. A comprehensive study of nanoink preparation and parameter optimization enables a low‐profile, multilayer printing of a high‐performance, capacitance flow sensor. The core printing process involves direct, microstructured patterning of biocompatible silver nanoparticles and polyimide. The optimized fabrication approach allows for transfer of highly conductive, patterned silver nanoparticle films to a soft elastomeric substrate. Stretchable mechanics modeling and seamless integration with an implantable stent display a highly stretchable and flexible sensor, deployable by a catheter for extremely low‐profile, conformal insertion in a blood vessel. Optimization of a transient, wireless inductive coupling method allows for wireless detection of biomimetic cerebral aneurysm hemodynamics with the maximum readout distance of 6 cm through meat. In vitro demonstrations include wireless monitoring of flow rates (0.05–1 m s(−1)) in highly contoured and narrow human neurovascular models. Collectively, this work shows the potential of the printed biosystem to offer a high throughput, additive manufacturing of stretchable electronics with advances toward batteryless, real‐time wireless monitoring of cerebral aneurysm hemodynamics. John Wiley and Sons Inc. 2019-08-07 /pmc/articles/PMC6755526/ /pubmed/31559136 http://dx.doi.org/10.1002/advs.201901034 Text en © 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Herbert, Robert Mishra, Saswat Lim, Hyo‐Ryoung Yoo, Hyoungsuk Yeo, Woon‐Hong Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics |
title | Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics |
title_full | Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics |
title_fullStr | Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics |
title_full_unstemmed | Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics |
title_short | Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real‐Time Monitoring of Cerebral Aneurysm Hemodynamics |
title_sort | fully printed, wireless, stretchable implantable biosystem toward batteryless, real‐time monitoring of cerebral aneurysm hemodynamics |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755526/ https://www.ncbi.nlm.nih.gov/pubmed/31559136 http://dx.doi.org/10.1002/advs.201901034 |
work_keys_str_mv | AT herbertrobert fullyprintedwirelessstretchableimplantablebiosystemtowardbatterylessrealtimemonitoringofcerebralaneurysmhemodynamics AT mishrasaswat fullyprintedwirelessstretchableimplantablebiosystemtowardbatterylessrealtimemonitoringofcerebralaneurysmhemodynamics AT limhyoryoung fullyprintedwirelessstretchableimplantablebiosystemtowardbatterylessrealtimemonitoringofcerebralaneurysmhemodynamics AT yoohyoungsuk fullyprintedwirelessstretchableimplantablebiosystemtowardbatterylessrealtimemonitoringofcerebralaneurysmhemodynamics AT yeowoonhong fullyprintedwirelessstretchableimplantablebiosystemtowardbatterylessrealtimemonitoringofcerebralaneurysmhemodynamics |