Cargando…
Exploring non-linear distance metrics in the structure–activity space: QSAR models for human estrogen receptor
BACKGROUND: Quantitative structure-activity relationship (QSAR) models are important tools used in discovering new drug candidates and identifying potentially harmful environmental chemicals. These models often face two fundamental challenges: limited amount of available biological activity data and...
Autores principales: | Balabin, Ilya A., Judson, Richard S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755572/ https://www.ncbi.nlm.nih.gov/pubmed/30229396 http://dx.doi.org/10.1186/s13321-018-0300-0 |
Ejemplares similares
-
Analysis and Comparison of Vector Space and Metric Space Representations in QSAR Modeling
por: Kausar, Samina, et al.
Publicado: (2019) -
Metric linear spaces
por: Rolewicz, Stefan
Publicado: (1972) -
The Geometry of Metric and Linear Spaces
por: Kelly, L
Publicado: (1975) -
Quantitative structure-activity relationships (QSARs) for estrogen binding to the estrogen receptor: predictions across species.
por: Tong, W, et al.
Publicado: (1997) -
Research on the non-linear spinor theory with indefinite metric in hilbert space
por: Heisenberg, W
Publicado: (1958)