Cargando…
Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening
BACKGROUND: Protein-ligand docking programs are routinely used in structure-based drug design to find the optimal binding pose of a ligand in the protein’s active site. These programs are also used to identify potential drug candidates by ranking large sets of compounds. As more accurate and efficie...
Autores principales: | Tai, Hio Kuan, Jusoh, Siti Azma, Siu, Shirley W. I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755579/ https://www.ncbi.nlm.nih.gov/pubmed/30552524 http://dx.doi.org/10.1186/s13321-018-0320-9 |
Ejemplares similares
-
Diversity-guided Lamarckian random drift particle swarm optimization for flexible ligand docking
por: Li, Chao, et al.
Publicado: (2020) -
LigTMap: ligand and structure-based target identification and activity prediction for small molecular compounds
por: Shaikh, Faraz, et al.
Publicado: (2021) -
Parallel multi-swarm cooperative particle swarm optimization for protein–ligand docking and virtual screening
por: Li, Chao, et al.
Publicado: (2022) -
GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking
por: Wong, Kin Meng, et al.
Publicado: (2020) -
Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets
por: Feinstein, Wei P., et al.
Publicado: (2015)