Cargando…
JPlogP: an improved logP predictor trained using predicted data
The partition coefficient between octanol and water (logP) has been an important descriptor in QSAR predictions for many years and therefore the prediction of logP has been examined countless times. One of the best performing models is to predict the logP using multiple methods and average the resul...
Autores principales: | Plante, Jeffrey, Werner, Stephane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755606/ https://www.ncbi.nlm.nih.gov/pubmed/30552535 http://dx.doi.org/10.1186/s13321-018-0316-5 |
Ejemplares similares
-
Partition Coefficients (logP) of Hydrolysable Tannins
por: Virtanen, Valtteri, et al.
Publicado: (2020) -
Revisiting the Use of Quantum Chemical Calculations in LogP(octanol-water) Prediction
por: Roy, Dipankar, et al.
Publicado: (2023) -
Multitask machine learning models for predicting lipophilicity (logP) in the SAMPL7 challenge
por: Lenselink, Eelke B., et al.
Publicado: (2021) -
LogD7.4 prediction enhanced by transferring knowledge from chromatographic retention time, microscopic pKa and logP
por: Wang, Yitian, et al.
Publicado: (2023) -
Energy-entropy prediction of octanol–water logP of SAMPL7 N-acyl sulfonamide bioisosters
por: Falcioni, Fabio, et al.
Publicado: (2021)