Cargando…

Update on the synergistic effect of HSL and insulin in the treatment of metabolic disorders

Hormone-sensitive lipase (HSL) is one of the three lipases in adipose tissue present during periods of energy demand. HSL is tightly controlled by insulin regulation via the central and peripheral systems. The suppressive effects of insulin on HSL are also associated with complex crosstalk with othe...

Descripción completa

Detalles Bibliográficos
Autores principales: Lan, Yu-Long, Lou, Jia-Cheng, Lyu, Wen, Zhang, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755629/
https://www.ncbi.nlm.nih.gov/pubmed/31565213
http://dx.doi.org/10.1177/2042018819877300
Descripción
Sumario:Hormone-sensitive lipase (HSL) is one of the three lipases in adipose tissue present during periods of energy demand. HSL is tightly controlled by insulin regulation via the central and peripheral systems. The suppressive effects of insulin on HSL are also associated with complex crosstalk with other pathways in the metabolic network. Because impaired insulin action is the driving force behind the pathogenesis of diabetes and other metabolic complications, elucidation of the intricate relationships between HSL and insulin may provide an in-depth understanding of these pandemic diseases and potentially identify strategies to inhibit disease development. Insulin not only differentially regulates HSL isoform transcription but also post-transcriptionally affects HSL phosphorylation by stimulating PKA and endothelin (ET-1), and controls its expression indirectly via regulating the activity of growth hormone (GH). In addition, a rapid elevation of HSL levels was detected after insulin injection in patients, which suggests that the inhibitory effects of insulin on HSL can be overridden by insulin-induced hypoglycemia. Conversely, individuals with hereditary HSL deficiency, and animals with experimental HSL deletion, showed major disruptions in mRNA/protein expression in insulin signaling pathways, ultimately leading to insulin resistance, diabetes, and fatty liver. Notably, HSL inactivation could cause insulin-independent fatty liver, while insulin resistance induced by HSL deficiency may further aggravate disease progression. The common beliefs that HSL is the overall rate-limiting enzyme in lipolysis and that insulin is an inhibitor of HSL have been challenged by recent discoveries; therefore, a renewed examination of their relationships is required. In this review, by analyzing current data related to the role of, and mutual regulation between, HSL and insulin and discussing unanswered questions and disparities in different lines of studies, the authors intend to shed light on our understanding of lipid metabolism and provide a rational basis for future research in drug development.