Cargando…
Machine learning for discovering missing or wrong protein function annotations: A comparison using updated benchmark datasets
BACKGROUND: A massive amount of proteomic data is generated on a daily basis, nonetheless annotating all sequences is costly and often unfeasible. As a countermeasure, machine learning methods have been used to automatically annotate new protein functions. More specifically, many studies have invest...
Autores principales: | Nakano, Felipe Kenji, Lietaert, Mathias, Vens, Celine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755698/ https://www.ncbi.nlm.nih.gov/pubmed/31547800 http://dx.doi.org/10.1186/s12859-019-3060-6 |
Ejemplares similares
-
A benchmark dataset for machine learning in ecotoxicology
por: Schür, Christoph, et al.
Publicado: (2023) -
Variation benchmark datasets: update, criteria, quality and applications
por: Sarkar, Anasua, et al.
Publicado: (2020) -
An annotated human blastocyst dataset to benchmark deep learning architectures for in vitro fertilization
por: Kromp, Florian, et al.
Publicado: (2023) -
Annotated real and synthetic datasets for non-invasive foetal electrocardiography post-processing benchmarking
por: Baldazzi, Giulia, et al.
Publicado: (2020) -
An Update on Wrong-Site Spine Surgery
por: DeVine, John G., et al.
Publicado: (2020)