Cargando…
Characterization of human norovirus binding to gut-associated bacterial ligands
OBJECTIVE: Research suggests human norovirus binding to histo-blood group antigen (HBGA)-like molecules on enteric bacteria may enhance viral pathogenesis; however, the properties of these bacterial ligands are not well known. Previous work identified, but did not characterize, seven norovirus-bindi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755701/ https://www.ncbi.nlm.nih.gov/pubmed/31547886 http://dx.doi.org/10.1186/s13104-019-4669-2 |
Sumario: | OBJECTIVE: Research suggests human norovirus binding to histo-blood group antigen (HBGA)-like molecules on enteric bacteria may enhance viral pathogenesis; however, the properties of these bacterial ligands are not well known. Previous work identified, but did not characterize, seven norovirus-binding bacteria. To further examine this bacteria–virus binding interaction, enteric bacteria were analyzed via Western blot with anti-HBGA antibodies and lectins targeting HBGA-associated sugar components. Virus overlay assays using capsids from six different human norovirus strains further identified responsible ligands and strain dependent binding properties. RESULTS: Each bacterial species possessed varying degrees of HBGA-like activity, and lectin binding further elucidated potential sugar residues involved (N-acetyl-galactosamine, α-d-galactose or α-l-fucose). Both GI and GII norovirus capsids bound specific bacterial ligand sizes, and generally corresponded to anti-HBGA Western blot patterns. A 35-kDa band reacted with all HBGA antibodies, bound all six of the noroviruses tested, and had a high affinity for the lectins. Collectively, this work characterizes the varying carbohydrate residues potentially responsible for norovirus–bacteria interactions and provides a basis for future ligand identification. |
---|