Cargando…
Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network
Sleep apnea (SA) is the most common respiratory sleep disorder, leading to some serious neurological and cardiovascular diseases if left untreated. The diagnosis of SA is traditionally made using Polysomnography (PSG). However, this method requires many electrodes and wires, as well as an expert to...
Autores principales: | Wang, Tao, Lu, Changhua, Shen, Guohao, Hong, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756143/ https://www.ncbi.nlm.nih.gov/pubmed/31579607 http://dx.doi.org/10.7717/peerj.7731 |
Ejemplares similares
-
Advancements in Cataract Detection: The Systematic Development of LeNet-Convolutional Neural Network Models
por: Ganokratanaa, Thittaporn, et al.
Publicado: (2023) -
A Modified LeNet CNN for Breast Cancer Diagnosis in Ultrasound Images
por: Balasubramaniam, Sathiyabhama, et al.
Publicado: (2023) -
Detection of Sleep Apnea from Single-Lead ECG Signal Using a Time Window Artificial Neural Network
por: Wang, Tao, et al.
Publicado: (2019) -
Development of a LeNet-5 Gas Identification CNN Structure for Electronic Noses
por: Wei, Guangfen, et al.
Publicado: (2019) -
Recognizing Non-Collaborative Radio Station Communication Behaviors Using an Ameliorated LeNet
por: Wu, Zilong, et al.
Publicado: (2020)