Cargando…

Regulation of Autophagy in Chick Myotubes: Effects of Insulin, Insulin-Like Growth Factor-I, and Amino Acids

Autophagy, an intracellular bulk protein degradation system in skeletal muscle, is increased under catabolic conditions resulting in muscle atrophy. This study aimed to investigate the effects of insulin, insulin-like growth factor (IGF)-I, and amino acids on autophagy (LC3-II content and expression...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakashima, Kazuki, Ishida, Aiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japan Poultry Science Association 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756409/
https://www.ncbi.nlm.nih.gov/pubmed/32055183
http://dx.doi.org/10.2141/jpsa.0170196
Descripción
Sumario:Autophagy, an intracellular bulk protein degradation system in skeletal muscle, is increased under catabolic conditions resulting in muscle atrophy. This study aimed to investigate the effects of insulin, insulin-like growth factor (IGF)-I, and amino acids on autophagy (LC3-II content and expression of autophagy-related genes) in chick myotubes. Chick myotubes were incubated with insulin (1 µg/ml), IGF-I (100 ng/ml), and amino acids for 3 h. The LC3-II content, an index of autophagosome formation, and mRNA expression of LC3B and GABARAPL1 were significantly decreased by insulin. The LC3-II content, but not mRNA expression of autophagy-related genes, was also significantly decreased by IGF-I. The LC3-II content and LC3B mRNA level were also significantly decreased by amino acids. The mRNA expression of atrogin-1/MAFbx, a muscle-specific ubiquitin ligase, was also significantly decreased by insulin, IGF-I, and amino acids in chick myotubes. These results indicated that insulin, IGF-I, and amino acids regulate autophagy as well as the ubiquitin–proteasome proteolytic pathway in chick myotubes.