Cargando…

Effects of Maternal and Progeny Dietary Vitamin Regimens on the Performance of Ducklings

This study evaluated the interaction effect of maternal and progeny vitamin regimens on the performance of ducklings. At 38 weeks of age, 780 female and 156 male duck breeders were fed either regular or high vitamin premix diet (maternal high premix had higher levels of all vitamins except K(3) than...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Zhouzheng, Jiang, Shizhen, Zeng, Qiufeng, Ding, Xuemei, Bai, Shiping, Wang, Jianping, Zhang, Keying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japan Poultry Science Association 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756494/
https://www.ncbi.nlm.nih.gov/pubmed/32055162
http://dx.doi.org/10.2141/jpsa.0170073
Descripción
Sumario:This study evaluated the interaction effect of maternal and progeny vitamin regimens on the performance of ducklings. At 38 weeks of age, 780 female and 156 male duck breeders were fed either regular or high vitamin premix diet (maternal high premix had higher levels of all vitamins except K(3) than maternal regular premix) for 16 weeks. Ducklings hatched from eggs laid at the end of the duck breeder trial were kept separate according to maternal treatment and were fed 2 levels of vitamin premix (NRC and high, progeny high premix had higher levels of all vitamins except biotin than progeny NRC premix) for 35 days. Body weight (P<0.001) and tibia ash (P=0.033) of 1-day-old ducklings and serum total superoxide dismutase activity of 14-day-old ducklings (P=0.027) were increased by maternal high vitamin premix. Progeny high vitamin premix increased body weight (14 days, P=0.019; 35 days, P=0.034), body weight gain (1–14 days, P=0.021; 1–35 days, P=0.034), gain:feed ratio (1–14 days, P<0.001), feed intake (15–35 days, P=0.037), serum total antioxidant capacity (14 days, P=0.048; 35 days, P=0.047), and serum calcium (14 days, P=0.007), and decreased serum malondialdehyde (14 days, P=0.038; 35 days, P=0.031) of ducklings. Maternal vitamin premix–progeny vitamin premix interaction significantly affected body weight (14 days, P=0.029), body weight gain (1–14 days, P=0.029), and feed intake (1–14 days, P=0.018) of progeny ducklings. Briefly, progeny NRC premix decreased the growth performance (days 1–14) of ducklings from maternal regular vitamin group, but not duckling from maternal high vitamin group. The results demonstrate a shortcoming of current vitamin recommendations for ducklings and suggest that the vitamin needs of starter ducklings can be met by either maternal or progeny vitamin supplementation.