Cargando…
Velocity coupling of grid cell modules enables stable embedding of a low dimensional variable in a high dimensional neural attractor
Grid cells in the medial entorhinal cortex (MEC) encode position using a distributed representation across multiple neural populations (modules), each possessing a distinct spatial scale. The modular structure of the representation confers the grid cell neural code with large capacity. Yet, the modu...
Autores principales: | Mosheiff, Noga, Burak, Yoram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756787/ https://www.ncbi.nlm.nih.gov/pubmed/31469365 http://dx.doi.org/10.7554/eLife.48494 |
Ejemplares similares
-
An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules
por: Mosheiff, Noga, et al.
Publicado: (2017) -
Specific evidence of low-dimensional continuous attractor dynamics in grid cells
por: Yoon, KiJung, et al.
Publicado: (2013) -
Accurate Path Integration in Continuous Attractor Network Models of
Grid Cells
por: Burak, Yoram, et al.
Publicado: (2009) -
A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability
por: Agmon, Haggai, et al.
Publicado: (2020) -
Continuous Attractor Network Model for Conjunctive Position-by-Velocity Tuning of Grid Cells
por: Si, Bailu, et al.
Publicado: (2014)