Cargando…
Deep Learning Algorithm for Reducing CT Slice Thickness: Effect on Reproducibility of Radiomic Features in Lung Cancer
OBJECTIVE: To retrospectively assess the effect of CT slice thickness on the reproducibility of radiomic features (RFs) of lung cancer, and to investigate whether convolutional neural network (CNN)-based super-resolution (SR) algorithms can improve the reproducibility of RFs obtained from images wit...
Autores principales: | Park, Sohee, Lee, Sang Min, Do, Kyung-Hyun, Lee, June-Goo, Bae, Woong, Park, Hyunho, Jung, Kyu-Hwan, Seo, Joon Beom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757001/ https://www.ncbi.nlm.nih.gov/pubmed/31544368 http://dx.doi.org/10.3348/kjr.2019.0212 |
Ejemplares similares
-
CT Evaluation for Clinical Lung Cancer Staging: Do Multiplanar Measurements Better Reflect Pathologic T-Stage than Axial Measurements?
por: Park, Sohee, et al.
Publicado: (2019) -
CT Image Conversion among Different Reconstruction Kernels without a Sinogram by Using a Convolutional Neural Network
por: Lee, Sang Min, et al.
Publicado: (2019) -
Content-Based Image Retrieval of Chest CT with Convolutional Neural Network for Diffuse Interstitial Lung Disease: Performance Assessment in Three Major Idiopathic Interstitial Pneumonias
por: Hwang, Hye Jeon, et al.
Publicado: (2021) -
Clinical Utility of Quantitative CT Analysis for Fissure Completeness in Bronchoscopic Lung Volume Reduction: Comparison between CT and Chartis™
por: Lee, Sei Won, et al.
Publicado: (2019) -
Collateral Ventilation Quantification Using Xenon-Enhanced Dynamic Dual-Energy CT: Differences between Canine and Swine Models of Bronchial Occlusion
por: Park, Eun-Ah, et al.
Publicado: (2015)