Cargando…
Deep learning to convert unstructured CT pulmonary angiography reports into structured reports
BACKGROUND: Structured reports have been shown to improve communication between radiologists and providers. However, some radiologists are concerned about resultant decreased workflow efficiency. We tested a machine learning-based algorithm designed to convert unstructured computed tomography pulmon...
Autores principales: | Spandorfer, Adam, Branch, Cody, Sharma, Puneet, Sahbaee, Pooyan, Schoepf, U. Joseph, Ravenel, James G., Nance, John W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757071/ https://www.ncbi.nlm.nih.gov/pubmed/31549323 http://dx.doi.org/10.1186/s41747-019-0118-1 |
Ejemplares similares
-
Natural language processing to convert unstructured COVID-19 chest-CT reports into structured reports
por: Fanni, Salvatore Claudio, et al.
Publicado: (2023) -
Automated detection of lung nodules and coronary artery calcium using artificial intelligence on low-dose CT scans for lung cancer screening: accuracy and prognostic value
por: Chamberlin, Jordan, et al.
Publicado: (2021) -
Deep learning approach to detection of colonoscopic information from unstructured reports
por: Seong, Donghyeong, et al.
Publicado: (2023) -
Yield of CT pulmonary angiography in the diagnosis of acute pulmonary embolism: short report
por: Chen, Zhongyi, et al.
Publicado: (2019) -
Automated extraction of information of lung cancer staging from unstructured reports of PET-CT interpretation: natural language processing with deep-learning
por: Park, Hyung Jun, et al.
Publicado: (2022)