Cargando…

A EEG-based emotion recognition model with rhythm and time characteristics

As an advanced function of the human brain, emotion has a significant influence on human studies, works, and other aspects of life. Artificial Intelligence has played an important role in recognizing human emotion correctly. EEG-based emotion recognition (ER), one application of Brain Computer Inter...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Jianzhuo, Chen, Shangbin, Deng, Sinuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757079/
https://www.ncbi.nlm.nih.gov/pubmed/31549331
http://dx.doi.org/10.1186/s40708-019-0100-y
Descripción
Sumario:As an advanced function of the human brain, emotion has a significant influence on human studies, works, and other aspects of life. Artificial Intelligence has played an important role in recognizing human emotion correctly. EEG-based emotion recognition (ER), one application of Brain Computer Interface (BCI), is becoming more popular in recent years. However, due to the ambiguity of human emotions and the complexity of EEG signals, the EEG-ER system which can recognize emotions with high accuracy is not easy to achieve. Based on the time scale, this paper chooses the recurrent neural network as the breakthrough point of the screening model. According to the rhythmic characteristics and temporal memory characteristics of EEG, this research proposes a Rhythmic Time EEG Emotion Recognition Model (RT-ERM) based on the valence and arousal of Long–Short-Term Memory Network (LSTM). By applying this model, the classification results of different rhythms and time scales are different. The optimal rhythm and time scale of the RT-ERM model are obtained through the results of the classification accuracy of different rhythms and different time scales. Then, the classification of emotional EEG is carried out by the best time scales corresponding to different rhythms. Finally, by comparing with other existing emotional EEG classification methods, it is found that the rhythm and time scale of the model can contribute to the accuracy of RT-ERM.