Cargando…
Social Isolation in Adolescence Disrupts Cortical Development and Goal-Dependent Decision-Making in Adulthood, Despite Social Reintegration
The social environment influences neurodevelopment. Investigations using rodents to study this phenomenon commonly isolate subjects, then assess neurobehavioral consequences while animals are still isolated. This approach precludes one from dissociating the effects of on-going versus prior isolation...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757188/ https://www.ncbi.nlm.nih.gov/pubmed/31527057 http://dx.doi.org/10.1523/ENEURO.0318-19.2019 |
_version_ | 1783453528901025792 |
---|---|
author | Hinton, Elizabeth A. Li, Dan C. Allen, Aylet G. Gourley, Shannon L. |
author_facet | Hinton, Elizabeth A. Li, Dan C. Allen, Aylet G. Gourley, Shannon L. |
author_sort | Hinton, Elizabeth A. |
collection | PubMed |
description | The social environment influences neurodevelopment. Investigations using rodents to study this phenomenon commonly isolate subjects, then assess neurobehavioral consequences while animals are still isolated. This approach precludes one from dissociating the effects of on-going versus prior isolation, hindering our complete understanding of the consequences of social experience during particular developmental periods. Here, we socially isolated adolescent mice from postnatal day (P)31 to P60, then re-housed them into social groups. We tested their ability to select actions based on expected outcomes using multiple reinforcer devaluation and instrumental contingency degradation techniques. Social isolation in adolescence (but not adulthood) weakened instrumental response updating, causing mice to defer to habit-like behaviors. Habit biases were associated with glucocorticoid insufficiency in adolescence, oligodendrocyte marker loss throughout cortico-striatal regions, and dendritic spine and synaptic marker excess in the adult orbitofrontal cortex (OFC). Artificial, chemogenetic stimulation of the ventrolateral OFC in typical, healthy mice recapitulated response biases following isolation, causing habit-like behaviors. Meanwhile, correcting dendritic architecture by inhibiting the cytoskeletal regulatory protein ROCK remedied instrumental response updating defects in socially isolated mice. Our findings suggest that adolescence is a critical period during which social experience optimizes one’s ability to seek and attain goals later in life. Age-typical dendritic spine elimination appears to be an essential factor, and in its absence, organisms may defer to habit-based behaviors. |
format | Online Article Text |
id | pubmed-6757188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-67571882019-09-24 Social Isolation in Adolescence Disrupts Cortical Development and Goal-Dependent Decision-Making in Adulthood, Despite Social Reintegration Hinton, Elizabeth A. Li, Dan C. Allen, Aylet G. Gourley, Shannon L. eNeuro Confirmation The social environment influences neurodevelopment. Investigations using rodents to study this phenomenon commonly isolate subjects, then assess neurobehavioral consequences while animals are still isolated. This approach precludes one from dissociating the effects of on-going versus prior isolation, hindering our complete understanding of the consequences of social experience during particular developmental periods. Here, we socially isolated adolescent mice from postnatal day (P)31 to P60, then re-housed them into social groups. We tested their ability to select actions based on expected outcomes using multiple reinforcer devaluation and instrumental contingency degradation techniques. Social isolation in adolescence (but not adulthood) weakened instrumental response updating, causing mice to defer to habit-like behaviors. Habit biases were associated with glucocorticoid insufficiency in adolescence, oligodendrocyte marker loss throughout cortico-striatal regions, and dendritic spine and synaptic marker excess in the adult orbitofrontal cortex (OFC). Artificial, chemogenetic stimulation of the ventrolateral OFC in typical, healthy mice recapitulated response biases following isolation, causing habit-like behaviors. Meanwhile, correcting dendritic architecture by inhibiting the cytoskeletal regulatory protein ROCK remedied instrumental response updating defects in socially isolated mice. Our findings suggest that adolescence is a critical period during which social experience optimizes one’s ability to seek and attain goals later in life. Age-typical dendritic spine elimination appears to be an essential factor, and in its absence, organisms may defer to habit-based behaviors. Society for Neuroscience 2019-09-20 /pmc/articles/PMC6757188/ /pubmed/31527057 http://dx.doi.org/10.1523/ENEURO.0318-19.2019 Text en Copyright © 2019 Hinton et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Confirmation Hinton, Elizabeth A. Li, Dan C. Allen, Aylet G. Gourley, Shannon L. Social Isolation in Adolescence Disrupts Cortical Development and Goal-Dependent Decision-Making in Adulthood, Despite Social Reintegration |
title | Social Isolation in Adolescence Disrupts Cortical Development and Goal-Dependent Decision-Making in Adulthood, Despite Social Reintegration |
title_full | Social Isolation in Adolescence Disrupts Cortical Development and Goal-Dependent Decision-Making in Adulthood, Despite Social Reintegration |
title_fullStr | Social Isolation in Adolescence Disrupts Cortical Development and Goal-Dependent Decision-Making in Adulthood, Despite Social Reintegration |
title_full_unstemmed | Social Isolation in Adolescence Disrupts Cortical Development and Goal-Dependent Decision-Making in Adulthood, Despite Social Reintegration |
title_short | Social Isolation in Adolescence Disrupts Cortical Development and Goal-Dependent Decision-Making in Adulthood, Despite Social Reintegration |
title_sort | social isolation in adolescence disrupts cortical development and goal-dependent decision-making in adulthood, despite social reintegration |
topic | Confirmation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757188/ https://www.ncbi.nlm.nih.gov/pubmed/31527057 http://dx.doi.org/10.1523/ENEURO.0318-19.2019 |
work_keys_str_mv | AT hintonelizabetha socialisolationinadolescencedisruptscorticaldevelopmentandgoaldependentdecisionmakinginadulthooddespitesocialreintegration AT lidanc socialisolationinadolescencedisruptscorticaldevelopmentandgoaldependentdecisionmakinginadulthooddespitesocialreintegration AT allenayletg socialisolationinadolescencedisruptscorticaldevelopmentandgoaldependentdecisionmakinginadulthooddespitesocialreintegration AT gourleyshannonl socialisolationinadolescencedisruptscorticaldevelopmentandgoaldependentdecisionmakinginadulthooddespitesocialreintegration |