Cargando…

Exploring Pharmacological Mechanisms of Xiang Ju Tablets in the Treatment of Allergic Rhinitis via a Network Pharmacology Approach

In this study, allergic rhinitis (AR) disease targets and Xiang Ju tablet-associated targets were determined through the use of databases for the identification of putative therapeutic targets and then combined. After the production of a putative therapeutic target interaction network for Xiang Ju t...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Kun xia, Duan, Xi, Han, Li zhu, Ju, Hong ye, Wang, Bin, Tang, Zhi shu, Song, Xiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757243/
https://www.ncbi.nlm.nih.gov/pubmed/31611923
http://dx.doi.org/10.1155/2019/6272073
Descripción
Sumario:In this study, allergic rhinitis (AR) disease targets and Xiang Ju tablet-associated targets were determined through the use of databases for the identification of putative therapeutic targets and then combined. After the production of a putative therapeutic target interaction network for Xiang Ju tablets against AR, topological analysis was used to determine the core targets of Xiang Ju tablets in AR treatment. For all putative therapeutic targets, analyses of biological function and pathway enrichment were performed to optimize the biological processes and key signaling pathways of Xiang Ju tablets in AR treatment. The top 5 therapeutic targets of Xiang Ju tablets in AR treatment were identified and included CXCL8, IL1B, IL6, IL10, and TNF. The biological processes, molecular functions, and cell composition related to the use of Xiang Ju tablets in AR treatment were predominantly associated with cytokine production, regulation of protein secretion, and regulation of peptide secretion; cytokine activity, cytokine receptor binding, and receptor ligand activity; and platelet alpha granule lumen, collagen-containing extracellular matrix, and platelet alpha granule. In addition, the top 64 key signaling pathways were identified.