Cargando…

Comprehensive analysis of aberrantly expressed profiles of mRNA and its relationship with serum galactose-deficient IgA1 level in IgA nephropathy

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is the leading cause of end-stage kidney disease. Previous mRNA microarray profiling studies of IgAN revealed inconsistent data. We sought to identify the aberrantly expressed genes and biological pathways by integrating IgAN gene expression datasets i...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Youxia, Liu, Xiangchun, Jia, Junya, Zheng, Jie, Yan, Tiekun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757375/
https://www.ncbi.nlm.nih.gov/pubmed/31547815
http://dx.doi.org/10.1186/s12967-019-2064-3
_version_ 1783453564222308352
author Liu, Youxia
Liu, Xiangchun
Jia, Junya
Zheng, Jie
Yan, Tiekun
author_facet Liu, Youxia
Liu, Xiangchun
Jia, Junya
Zheng, Jie
Yan, Tiekun
author_sort Liu, Youxia
collection PubMed
description BACKGROUND: Immunoglobulin A nephropathy (IgAN) is the leading cause of end-stage kidney disease. Previous mRNA microarray profiling studies of IgAN revealed inconsistent data. We sought to identify the aberrantly expressed genes and biological pathways by integrating IgAN gene expression datasets in blood cells and performing systematically experimental validation. We also explored the relationship between target genes and galactose-deficient IgA1 (Gd-IgA1) in IgAN. METHODS: We retrieved Gene Expression Omnibus (GEO) datasets of IgAN. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used for functional analysis. Deep sequencing on RNA isolated from B cells was used for microarray validation. The relationship between target mRNA expressions and Gd-IgA1 levels in serum were also studied. RESULTS: Three studies with microarray expression profiling datasets met our inclusion criteria. We identified 655 dyregulated genes, including 319 up-regulated and 336 down-regulated genes in three GEO datasets with a total of 35 patients of IgAN and 19 healthy controls. Based on biological process in GO term, these dyregulated genes are mainly related to pentose-phosphate shunt, non-oxidative branch, post-embryonic camera-type eye development and leukocyte activation. KEGG pathway analysis of microarray data revealed that these aberrantly expressed genes were enriched in human T-cell leukemia virus 1 infection, proteoglycans in cancer, intestinal immune network for IgA production and autophagy. We further performed deep sequencing on mRNAs isolated from B cells of an independent set of five patients with IgAN and three healthy persons with the same clinical and demographic characteristics. Seventy-seven genes overlapped with 655 differentially regulated genes mentioned above, including 43 up-regulated and thirty-four down-regulated genes. We next investigated whether these genes expression correlated with Gd-IgA1 levels in IgAN patients. Pearson correlation analyses showed PTEN (phosphatase and tensin homolog) was the most powerful gene negatively correlated with Gd-IgA1 levels. CONCLUSIONS: These results demonstrated that dyregulated genes in patients with IgAN were enriched in intestinal immune network for IgA production and autophagy process, and PTEN in B cells might be involved in the mechanism of Gd-IgA1 production.
format Online
Article
Text
id pubmed-6757375
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-67573752019-09-30 Comprehensive analysis of aberrantly expressed profiles of mRNA and its relationship with serum galactose-deficient IgA1 level in IgA nephropathy Liu, Youxia Liu, Xiangchun Jia, Junya Zheng, Jie Yan, Tiekun J Transl Med Research BACKGROUND: Immunoglobulin A nephropathy (IgAN) is the leading cause of end-stage kidney disease. Previous mRNA microarray profiling studies of IgAN revealed inconsistent data. We sought to identify the aberrantly expressed genes and biological pathways by integrating IgAN gene expression datasets in blood cells and performing systematically experimental validation. We also explored the relationship between target genes and galactose-deficient IgA1 (Gd-IgA1) in IgAN. METHODS: We retrieved Gene Expression Omnibus (GEO) datasets of IgAN. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used for functional analysis. Deep sequencing on RNA isolated from B cells was used for microarray validation. The relationship between target mRNA expressions and Gd-IgA1 levels in serum were also studied. RESULTS: Three studies with microarray expression profiling datasets met our inclusion criteria. We identified 655 dyregulated genes, including 319 up-regulated and 336 down-regulated genes in three GEO datasets with a total of 35 patients of IgAN and 19 healthy controls. Based on biological process in GO term, these dyregulated genes are mainly related to pentose-phosphate shunt, non-oxidative branch, post-embryonic camera-type eye development and leukocyte activation. KEGG pathway analysis of microarray data revealed that these aberrantly expressed genes were enriched in human T-cell leukemia virus 1 infection, proteoglycans in cancer, intestinal immune network for IgA production and autophagy. We further performed deep sequencing on mRNAs isolated from B cells of an independent set of five patients with IgAN and three healthy persons with the same clinical and demographic characteristics. Seventy-seven genes overlapped with 655 differentially regulated genes mentioned above, including 43 up-regulated and thirty-four down-regulated genes. We next investigated whether these genes expression correlated with Gd-IgA1 levels in IgAN patients. Pearson correlation analyses showed PTEN (phosphatase and tensin homolog) was the most powerful gene negatively correlated with Gd-IgA1 levels. CONCLUSIONS: These results demonstrated that dyregulated genes in patients with IgAN were enriched in intestinal immune network for IgA production and autophagy process, and PTEN in B cells might be involved in the mechanism of Gd-IgA1 production. BioMed Central 2019-09-23 /pmc/articles/PMC6757375/ /pubmed/31547815 http://dx.doi.org/10.1186/s12967-019-2064-3 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Liu, Youxia
Liu, Xiangchun
Jia, Junya
Zheng, Jie
Yan, Tiekun
Comprehensive analysis of aberrantly expressed profiles of mRNA and its relationship with serum galactose-deficient IgA1 level in IgA nephropathy
title Comprehensive analysis of aberrantly expressed profiles of mRNA and its relationship with serum galactose-deficient IgA1 level in IgA nephropathy
title_full Comprehensive analysis of aberrantly expressed profiles of mRNA and its relationship with serum galactose-deficient IgA1 level in IgA nephropathy
title_fullStr Comprehensive analysis of aberrantly expressed profiles of mRNA and its relationship with serum galactose-deficient IgA1 level in IgA nephropathy
title_full_unstemmed Comprehensive analysis of aberrantly expressed profiles of mRNA and its relationship with serum galactose-deficient IgA1 level in IgA nephropathy
title_short Comprehensive analysis of aberrantly expressed profiles of mRNA and its relationship with serum galactose-deficient IgA1 level in IgA nephropathy
title_sort comprehensive analysis of aberrantly expressed profiles of mrna and its relationship with serum galactose-deficient iga1 level in iga nephropathy
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757375/
https://www.ncbi.nlm.nih.gov/pubmed/31547815
http://dx.doi.org/10.1186/s12967-019-2064-3
work_keys_str_mv AT liuyouxia comprehensiveanalysisofaberrantlyexpressedprofilesofmrnaanditsrelationshipwithserumgalactosedeficientiga1leveliniganephropathy
AT liuxiangchun comprehensiveanalysisofaberrantlyexpressedprofilesofmrnaanditsrelationshipwithserumgalactosedeficientiga1leveliniganephropathy
AT jiajunya comprehensiveanalysisofaberrantlyexpressedprofilesofmrnaanditsrelationshipwithserumgalactosedeficientiga1leveliniganephropathy
AT zhengjie comprehensiveanalysisofaberrantlyexpressedprofilesofmrnaanditsrelationshipwithserumgalactosedeficientiga1leveliniganephropathy
AT yantiekun comprehensiveanalysisofaberrantlyexpressedprofilesofmrnaanditsrelationshipwithserumgalactosedeficientiga1leveliniganephropathy