Cargando…
Automatic extraction of imaging observation and assessment categories from breast magnetic resonance imaging reports with natural language processing
BACKGROUND: Structured reports are not widely used and thus most reports exist in the form of free text. The process of data extraction by experts is time-consuming and error-prone, whereas data extraction by natural language processing (NLP) is a potential solution that could improve diagnosis effi...
Autores principales: | Liu, Yi, Zhu, Li-Na, Liu, Qing, Han, Chao, Zhang, Xiao-Dong, Wang, Xiao-Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759110/ https://www.ncbi.nlm.nih.gov/pubmed/31268905 http://dx.doi.org/10.1097/CM9.0000000000000301 |
Ejemplares similares
-
The implementation of natural language processing to extract index lesions from breast magnetic resonance imaging reports
por: Liu, Yi, et al.
Publicado: (2019) -
Subdividing BI-RADS category 4 breast lesions observed on magnetic
resonance imaging: Is it feasible?
por: Bitencourt, Almir Galvão Vieira
Publicado: (2016) -
Automatic segmentation of brain tumors in magnetic resonance imaging
por: Mascarenhas, Layse Ribeiro, et al.
Publicado: (2020) -
Automatic Diagnosis of Spinal Disorders on Radiographic Images: Leveraging Existing Unstructured Datasets With Natural Language Processing
por: Galbusera, Fabio, et al.
Publicado: (2021) -
Magnetic resonance image tissue classification using an automatic method
por: Yazdani, Sepideh, et al.
Publicado: (2014)