Cargando…
Intersubject MVPD: Empirical comparison of fMRI denoising methods for connectivity analysis
Noise is a major challenge for the analysis of fMRI data in general and for connectivity analyses in particular. As researchers develop increasingly sophisticated tools to model statistical dependence between the fMRI signal in different brain regions, there is a risk that these models may increasin...
Autores principales: | Li, Yichen, Saxe, Rebecca, Anzellotti, Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759145/ https://www.ncbi.nlm.nih.gov/pubmed/31550276 http://dx.doi.org/10.1371/journal.pone.0222914 |
Ejemplares similares
-
PyMVPD: A Toolbox for Multivariate Pattern Dependence
por: Fang, Mengting, et al.
Publicado: (2022) -
Benchmarking common preprocessing strategies in early childhood functional connectivity and intersubject correlation fMRI
por: Graff, Kirk, et al.
Publicado: (2022) -
Advancing motion denoising of multiband resting-state functional connectivity fMRI data
por: Williams, John C., et al.
Publicado: (2022) -
Continuous Evaluation of Denoising Strategies in Resting-State fMRI Connectivity Using fMRIPrep and Nilearn
por: Wang, Hao-Ting, et al.
Publicado: (2023) -
An empirical Bayes normalization method for connectivity metrics in resting state fMRI
por: Chen, Shuo, et al.
Publicado: (2015)