Cargando…

Optimizing bacterial DNA extraction in urine

Urine is an acceptable, non-invasive sample for investigating the human urogenital microbiota and for the diagnosis of sexually transmitted infections. However, low quantities of bacterial DNA and PCR inhibitors in urine may prevent efficient PCR amplification for molecular detection of bacteria. Fu...

Descripción completa

Detalles Bibliográficos
Autores principales: Munch, Matthew M., Chambers, Laura C., Manhart, Lisa E., Domogala, Dan, Lopez, Anthony, Fredricks, David N., Srinivasan, Sujatha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759279/
https://www.ncbi.nlm.nih.gov/pubmed/31550285
http://dx.doi.org/10.1371/journal.pone.0222962
Descripción
Sumario:Urine is an acceptable, non-invasive sample for investigating the human urogenital microbiota and for the diagnosis of sexually transmitted infections. However, low quantities of bacterial DNA and PCR inhibitors in urine may prevent efficient PCR amplification for molecular detection of bacteria. Furthermore, cold temperatures used to preserve DNA and bacteria in urine can promote precipitation of crystals that interfere with DNA extraction. Saline, Dulbecco’s Phosphate Buffered Saline, or Tris-EDTA buffer were added to urine from adult men to determine if crystal precipitation could be reversed without heating samples beyond ambient temperature. Total bacterial DNA concentrations and PCR inhibition were measured using quantitative PCR assays to compare DNA yields with and without buffer addition. Dissolution of crystals with Tris-EDTA prior to urine centrifugation was most effective in increasing bacterial DNA recovery and reducing PCR inhibition. DNA recovery using Tris-EDTA was further tested by spiking urine with DNA from bacterial isolates and median concentrations of Lactobacillus jensenii and Escherichia coli 16S rRNA gene copies were found to be higher in urine processed with Tris-EDTA. Maximizing bacterial DNA yield from urine may facilitate more accurate assessment of bacterial populations and increase detection of specific bacteria in the genital tract.